

Patterns for Modularity II:
Revenge Of the patterns

Zoran Sevarac, Faculty of Organizational Sciences,
University of Belgrade

Jaroslav Tulach, NetBeans Team, Oracle, Prague

Anton Epple, Eppleton IT Consulting

Module Systems
● OSGI
● NetBeans Platform
● Jigsaw

„a general reusable solution to a commonly
occurring problem in software design“

Software Design Patterns

„patterns are abstraction
 of experience“

„antipattern is a pattern that may be
commonly used but is ineffective
and/or counterproductive in practice“

Modularity Patterns
What are commonly occurring problems when

creating modular applications?

1) reusability
2) flexibility (change and extensibility with
backward compatiblity)
3) dependency

How to evaluate a pattern goodness?

Modularity principles - criteria for
evaluating patterns

● Maximize reuse
● Minimize coupling
● Deal with change
● Ease Maintenance
● Ease Extensibility
● Save resources

Modularity Patterns
by Kirk Knoernschild

● ModuleReuse – Emphasize reusability at the module level.

● ModuleFacade – Create a facade serving as a coarse-grained entry
point to the modules underlying implementation

● AbstractModules – Depend upon the abstract elements of a module.

● SeparateAbstractions – Separate abstractions from the classes that
realize them.

● DefaultImplementation – Provide modules with a default
implementation.

● ImplementationFactory – Use factories to create a modules
implementation classes.

Implementation Factory

Modularity Patterns
by Kirk Knornschild

● PhysicalLayers – Module relationships should not violate the
conceptual layers.

● ExternalConfiguration – Modules should be externally configurable

(branding, internationalization)

● ManageRelationships – Inverting and eliminating dependencies

Example
● We want to create reusable software component/module,

easy to extend and change

● Starting with few simple classes, then creating abstractions
(AbstractModules, SeparateAbstractions,
PublishedInterface), breaking it into parts, depend on
other modules (ManageRelationships, PhysicalLayers) and
add configuration (ExternalConfiguration).

● Since we have few abstractions it will make sense to have
ImplementationFactory and DefaultImplementation

● Put ModuleFacade to make it easier to ese by the rest of
app

● Use AdapterModule to make it work with existing code

AntiPatterns
● Over-Generalized Interfaces - attempt to create systems with infinite

flexibility, but succeed only in creating systems that are impossible to
maintain

● FUD Architecture - The fear of being wrong, or creating an
architecture that will change later, results in an architecture that
actually solves nothing

● MeaninglessAbstraction – Example: RegexPattern extends Pattern

● NeverReusedReusableModule - Reusable Module

● PileOfParts - Too granular modular architecture

● BigBallOfMudModule - Too heavy module, put everything in one
module

Reusability

Kirk Knoernschild: Maximizing reuse complicates use

Means that increase in reusability, also increases complexity and decreases usability
of the software component

Reusability
● Granularity - extent to which a system is

broken down into parts

Coarse-grained components are easier to use, but fine-
grained components are more reusable.

● Weight - extent to which a component depends
on other components (dependancies).

Lightweight components are more reusable, but
heavyweight components are easier to use.

Discussion

Has anyone managed to create non trivial
resuable component, that has actually been
reused in other apps in same domain?

Weight/dependencies
● Compile

● Put the module on classpath during compilation

● Usually implies the module is needed during runtime too

● But not in case of annotation processors

● Linkage
● Classloader needs to see these modules

● Execution
● Just be present in the running environment

● Good modular system needs to express them!

Blackbox Configuration Pattern
Proper combination of dependencies balances

reuse and ease of use.

Show in Browser API

Client1

ClientN Compile &
Linkage

deps

BrowserImpl

Windows

Linux

MacOSX

BrowserImpl
for Mac

BrowserImpl
for Windows

BrowserImpl
for Linux

Compile &
Linkage

deps

Requires
token

Provides
token

Modularity Without APIs?
● Incremental deployment

● Old and new versions linked together

● Backward compatibility of public module interface

● Distributed development
● Independent schedules

● Can't organize global change

● API-less world prevents updates
● MediaWiki close proxymity

● Compatible APIs minimize coupling

Anti: Magical Strings
● OSGi spec identifies modules by URL:

public Bundle installBundle(String url);

● The JAR is downloaded & copied from the URL
● Can I install a bundle without copying it?
● Spec is silent, but Felix and Equinox support:

ctx.installBundle("reference:file:///path/to/the.jar");

● Magical strings give you loose coupling
● Too little coupling!

Links of interest
● http://www.kirkk.com/modularity/chapters/

● http://techdistrict.kirkk.com/2009/07/08/reuse-is-the-dream-dead/

● http://c2.com/cgi/wiki?AntiPatternsCatalog

● Component Software: Beyond Object-Oriented Programming,
Clemens Szyperski

● http://wiki.apidesign.org/wiki/APIAntiPatterns

http://www.kirkk.com/modularity/chapters/
http://techdistrict.kirkk.com/2009/07/08/reuse-is-the-dream-dead/
http://c2.com/cgi/wiki?AntiPatternsCatalog
http://wiki.apidesign.org/wiki/APIAntiPatterns

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	dependencies
	configuration
	without-apis
	Slide 17
	Slide 18

