
Charles University, Prague

Faculty of Mathematics and Physics

Master Thesis

Author: Jaroslav Tulach

Supervisor of Thesis: RNDr. Jan Hric

Major: Computer Science

Year: 1998

Typing Theory in Terms of Graphs

Jaroslav Tulach

April 21, 1998

Acknowledgements

First of all I would like to claim that all the type graph theory presented in this

thesis is my work. All de�nitions, lemmas, theorems and proofs are completely

written by me. I would like to ensure that I have never seen similiar attempt

of using graphs for description of types. Of course the Hindley/Milner theory

presented in the chapter one is not developed by me, but the type graph theory

used to describe it is mine. The content of chapter two is not directly based

on any other research and the requirements for types with subtyping are taken

from common knowledges. Again the graph typing theory build to describe

types with subtyping is created by me.

I declare that I have written whole thesis without anybody else help except

following people, who I would like to thank. Without them the thesis would

never exist or at least would be even worse.

Jan Hric guided my work, read everything I wrote. Learned my theory and

corrected my de�nitions, lemmas and proofs. Found a lot of mistypings,

oversights in de�nitions and bugs in proofs. Without his help the theory

would have much more bugs.

Helena Stolka, Jack Catchpoole helped me to correct my English. Added

a lot of a and the and rewrite many sentences from my English to the real

one.

Vlado Majerech helped me with non-trivial L

A

T

E

X functions.

Thanks you all for your help. It has been pleasure to be supported by you.

At last I would like to ensure everybody that I agree with the public distribution

of this thesis.

Prague, 21th April 1998 Jaroslav Tulach

1

Contents

1 Typing with graphs 7

1.1 Types in Functional Languages 7

1.2 Graphs . 9

1.3 Type graphs . 12

1.4 Comparing types . 13

1.5 Substitution on graphs . 15

1.6 Node Equalities . 19

1.7 Algorithm for Solving Equalities 20

1.8 Correctness of the Algorithm . 21

1.9 Finiteness of the Algorithm . 25

1.10 Conclusion . 26

2 Subtyping 27

2.1 Code reuse vs. subtyping . 27

2.2 Records and Objects . 28

2.3 Extended Graphs . 29

2.4 Constructors . 31

2.5 Comparing of Types . 34

2.6 Node Inequalities . 34

2.7 Solution for Set of Inequalities 36

2.8 Conclusion . 38

2

List of Figures

1.1 Representation of type [Int] . 10

1.2 More types . 10

1.3 Cyclic type . 11

1.4 Directions . 11

1.5 Each node represents type . 12

1.6 Nonreachable node . 12

1.7 Two equivalent one-root graphs 14

1.8 Substitution of [Int] as the �rst param of function last 15

1.9 Substitution of f(a) = i . 17

1.10 last ["Hello", "World"] . 19

1.11 Equivalence of nodes by equivalence of subnodes 21

1.12 Used node . 22

2.1 Type derived from SimpleType 29

2.2 Directions on extended graphs . 30

2.3 Cyclic extended graph . 31

2.4 Constructor Second . 31

2.5 Graph for type Object . 32

2.6 Standard types . 33

2.7 Graph for set of inequalities . 37

2.8 Missing common super type . 37

3

List of Algorithms

1.1 Algorithm for solving of equations 20

2.1 Records in Clean . 28

2.2 Object extension to Clean . 28

2.3 Unused argument of a type . 32

2.4 Contravariant and covariant argument 32

2.5 Algorithm for testing subtype relation between nodes 35

2.6 Checking if graph is a solution of set of inequalities 38

4

Introduction

People are used to thinking in cathegories. They like to sort things into groups.

Their decisions are based on looks, tastes, sounds, etc. A set of things with

common properties forms a type. This type collects things into a group with

the same or similiar behaviour.

Programming languages also work with objects. Characters, numbers and

strings are basic types one can encounter in nearly every computer language.

The type not only determines the set of values, but also the set of operations

that can be executed. Usually the set of types is not �xed but can be extended

by a programmer. The way new types can be created and how types can be

composed depends on the model of typing theory the language uses. That is

why typing theories have been receiving a lot of attention.

The possibility to partially check correctness of a program and discover key-

ing mistakes, oversights and evident nonsenses before the program is executed

and crashes provides great motivation for prior and future research. Funda-

mentals have been based on the study of lambda-calculus. These are greately

explained in [1]. Theories based on the original by Hindley/Milner have been

used in many functional languages. The typical features of most functional

languages include polymorphic types, treating functions as regular objects and

often some kind of overloading. The functional languages are runtime safe.

When a program is correctly typed it will run without any runtime errors.

The other motivation for the study of typing theories is based on computer

languages as Algol, C, Pascal and object-oriented languages as Simula, Ei�el and

Java. The object-oriented languages lack ways for manipulating methods but

o�er subclassing with the possibility to easily reuse and modify already written

code. The OO languages safety is limited compared to functional languages.

Without functional polymorphism the programs must use type castings. Such

programs then cannot be fully checked for correctness and can fail on execution.

The actual question is wheter we could take advantage of subtyping that is

very powerful for describing real applications like simulations and window man-

agement, and create a typing theory that will not lack casting problems. Also,

we would like to take the good from functional languages and allow functions to

be treated as other objects, and introduce polymorphic types to object oriented

theory.

The work in this thesis is motivated by the Term Graph Rewriting System

[3] designed to describe computation of rewriting systems. We take their model,

5

modify it to express not the computation process but the relation between types

and provide modi�cation operations. We describe types by nodes and edges in

the graph. We give a precise description of what a type is by restriction of the

set of type graphs to only those which represent meaningful types. We de�ne

how to compare two types and present algorithms working on such graphs.

The graph theory we try to develop in this thesis should provide new view

on already known typing theories and should connect the world of graphs with

the area of types. This could allow application of well-known graph algorithm

to computation of types. We study how the graph theory can be used to express

types with subtyping relationship also.

In the �rst chapter we present the original Hindley/Milner typing theory

in terms of graphs. We de�ne type graphs, provide ways of comparing types

and introduce the main operation for modi�cation of graphs, substitution. We

de�ne the set of equalities and provide an algorithm that can solve the set and

�nd the best possible solution. We prove that the algorithm is �nite and correct.

In the second chapter we show how the graphs can be extended to express

subclassing. We give natural requirements for the creation of new constructors,

describe restrictions to the set of constructors, present an algorithm for com-

paring types and discuss what the graph model is missing in order to provide a

full working range for types with subclassing.

6

Chapter 1

Typing with graphs

The description of the typing theory with type variables is given in this chapter.

First of all the examples common for functional languages are presented. Then

the original Hindley/Milner theory is described in terms of graphs.

We show that the graphs provide practical way for representation of types.

By describing the types by graphs we can use common graph algorithms for

testing of cycles and etc. Also due to the choosen representation of variables

our model does not have problems during substitutions. The variables need not

be renamed, we need not check whether a variable is free for substitution or

not.

The process of development the type graph theory goes as follows. We de�ne

what a type constructor is, describe how types are created from constructors and

how they are represented by type graphs. Then substitution, our only operation

on type graphs, is introduced. It allows us to de�ne ways for comparing type

graphs and after de�ning sets of equalities to specify what a solutions are and

to choose the best solution of them.

Then we present an algorithm for solving sets of equalities. We prove that

if there is a solution the algorithm �nds the best one and that the algorithm

�nishes its computation for any input.

1.1 Types in Functional Languages

This section presents the implementation of the Hindley/Milner types in func-

tional languges. Examples of expressions and types are presented and then the

sence of constructors is described and their formal de�nition is given.

A usual program in common functional language consists of declarations of

functions or variables. Each such object must have its type. The type can

be speci�ed explicitly or derived by the compiler. Each language comes with

prede�ned basic types but also allows construction of new ones by de�nition of

new type constructors.

The standard set of constructors usualy includes constructors for basic types

7

Int, Real, String, list constructor [] and function constructor ->. Moreover a

set of constructors (,), (,,), (,,,) and etc. is often provided to describe tuple,

triple, quadruple and so on. Each constructor has assigned arity, the number

of types that must be provided to it to form a new type. The constructors Int,

Real, String have arity zero. That is why they do not need no other types,

but immediately represent types. List constructor has arity one, so it needs one

type to create new one. Examples of list types are list of integers [Int], list of

reals [Real] or list of lists of integers [[Int]]. The constructor -> has arity

two and the type it creates is used to represent a function.

Example 1.1.1 In the following program (written in functional language Clean

[2]) the prede�ned type Int is used together with the list constructor [] to create

the list of integers type [Int]. Functional constructor ! composes two types

into one function type [Int]! Int.

// Function that takes list of integers and

// returns the last element in the list.

last :: [Int] -> Int // definition of type of last

last [x : y] = last y

last [x] = x

The function last does not depend on integers. It need not know the element

type it works on. It could without any modi�cation work on Real or String.

For such cases, the Clean language o�ers polymorphic type variables. The type

of last could be last :: [x] -> x. The x is a type variable (begins with

lowercase) for which any concrete type can be substituted. So it is possible to

use last on integers and also on strings (see 1.1.2).

Example 1.1.2 Usage of polymorphic function last. In this example the type

of last is [x] -> x.

last [1, 2, 3] // produces integer 3

last [1.3, 2.77, 3.0] // produces real 3.0

last ["Hello", "Hi"] // produces string "Hi"

Example 1.1.3 Following piece of code de�nes new constructor which riches

the set of default ones. The new constructor is named Either and has arity

two. So when it is used (Either a a) in type de�nition, two types (in this case

variables) must be provided.

// Definition of new type constructor

::Either a b = First a | Second b

// Function that returns the element

takeElement :: (Either a a) -> a

takeElement (First x) = x

takeElement (Second x) = x

8

In spite of that one can create own constructors, they are created during

compilation. But their set does not change during the execution of the program.

We state this immutability in following de�nition.

De�nition 1.1.1 The set of constructors can be any (possibly in�nite) set. Let

us denote it as C , and suppose that it is immutable through rest of this chapter.

(i) The function arity : C ! N assignes to each constructor a number of

parameters needed to create a new type.

(ii) C

k

is a set of constructors with arity k as de�ned by C

k

= fc 2 C :

arity(c) = kg.

1.2 Graphs

In this section graphs are described. The graphs consist of nodes with assigned

constructors symbols, oriented edges between nodes and list of important nodes,

so called roots. We de�ne special constructor that is used to mark nodes repre-

senting variables. Then we introduce the term direction that allow us to describe

and work with the topology of the graph. Also few related terms based on the

direction are speci�ed.

The motivation for using graphs for describing types is taken from [3]. The

Term Graph Rewriting is discussed there and graphs are used to describe func-

tions, their arguments and variables. The model presented here is similiar but

it describes types, their parameters and type variables. Also the operations on

our graphs are di�erent.

The graph consists of nodes and directed edges. To each node a constructor

symbol is assigned. Its arity de�nes the number of outgoing edges from the

node. The precise de�nition follows:

De�nition 1.2.1 Graph g is quarduple (V; symb; args; roots) where:

(i) V is any �nite set,

(ii) symb : V ! C is a function that assigns a constructor to each node,

(iii) args : V ! V

�

de�nes outgoing edges such that for each v 2 V the

following condition is sati�ed: arity(symb(v)) = length(args(v)),

(iv) roots 2 V

�

is a list of important nodes (roots) in the graph.

Notation 1.2.1 When graph g = (V; symb; args; roots) will be discussed, the

symbols V

g

, symb

g

, args

g

and roots

g

can be used instead of V , symb, args and

roots to distinguish the used graph.

Notation 1.2.2 Whenever arguments of a node are quanti�ed we use general

quanti�er instead of bounded one. So (8i) args

g

(u)

i

is a shorter version of

(8i < length(args

g

(u))) args

g

(u)

i

.

To create a graph whose nodes would represent the Clean's type, we have

to create separate nodes for all variables and assign a special constructor with

zero arity to them. Let us denote it as ?. Then we take the constructor in the

9

�

�

�

��

Int

[]

Figure 1.1: Representation of type [Int]

�

�

- �

�

�

??

�

�

�/

S

S

Sw

�

�

�/

S

S

Sw

�

�

�

�=

?

Z

Z

Z~

[]

[]

a: (,)

b:(,)

[]

[]

c:(,)

[]

Figure 1.2: More types

type that uses only types whose nodes have already been created and create a

new node for it. The outgoing edges are redirected to the used nodes.

De�nition 1.2.2 The set of variables for graph g is denoted as V ar

g

and de-

�ned as V ar

g

= fv 2 V

g

: symb

g

(v) =?g.

The type [Int] can be represented by graph pictured at 1.1 . But one

type can have more graph representations. For example ([u], [u]) can be

represented as both roots b and c of graph at �gure 1.2 . But the root a

represents type ([v], [w]).

Usually each type in functional language has �nite representation. So, by

using the construction described above, we can construct acyclic graph for each

type. Moreover, no cyclic graph represents any functional type.

Example 1.2.1 The root r of graph at �gure 1.3 is an example of node not

representing valid type. The type cannot be valid because it would have to

become non�nite (a, (a, (a, ...))).

For this reason we restrict the set of graphs to acyclic. To achieve this the

notion of direction is provided. It describes the sequence of indexes determining

argument edges that should be choosen on the path from a node.

Example 1.2.2 In the �gure 1.4 the directions (0, 0) and (1, 0) lead from

root r to the node a and the directions (1, 1) and (2, 0) go from root to the

node b.

10

� �

��

?

�

r:(,)

Figure 1.3: Cyclic type

�

�

�	

Z

Z

Z~

�

�

��

B

B

BN

A

A

AU

�

�

��

?

r:(,,)

[]

(,)

[]

Figure 1.4: Directions

De�nition 1.2.3 Let g be a graph. Let v 2 V

g

. Then

(i) Direction is any element of Dir = N

�

(any sequence of natural num-

bers),

(ii) Path along direction s 2 Dir is any p 2 V

g

�

where length(p) =

length(s) + 1 and for each i < length(s) p

i+1

= args

g

(p

i

)

s

i

,

(iii) when there is path p along direction s we say that the direction s leads

from p

0

to p

length(p)�1

and denote it as p

0

s

;

g

p

length(p)�1

,

(iv) s is a possible direction from v if there exists a node u 2 V

g

such that

v

s

;

g

u,

(v) symbol Dir

g

(v) denotes all possible directions from node v in graph g

and is de�ned as Dir

g

(v) = fs : (9u 2 V

g

) v

s

;

g

ug,

(vi) if s 2 Dir

g

(v) then result of application of the direction to node v is

such node u that v

s

;

g

u. The node u can be then denoted by s

g

(v).

De�nition 1.2.4 Let g be a graph. Node v 2 V

g

is said to be in a cycle if there

exists a direction s such that length(s) � 1 and v

s

;

g

v.

(i) g is cyclic graph if (9v 2 V

g

) v is in a cycle.

(ii) g is acyclic graph otherwise.

Example 1.2.3 Each node in graph represents a Clean's type. The root r

represents ([x]; [y]), nodes u and v represents ([z]) and leaves a and b stand for

a variable in the example 1.5 . But the type ([x]; [y]) is not speci�ed only by

node r. Because its edges lead into u, v and indirectly into a and b, these nodes

are also needed. We say that they are used by r.

11

�

�

�/

? ?

S

S

Sw

r: (,)

v:[]

a:

b:

u:[]

Figure 1.5: Each node represents type

�

�

��

A

A

AU

?

r: (,)

[]

Int

Figure 1.6: Nonreachable node

De�nition 1.2.5 Let g be a graph. For each node v 2 V

g

the set of used nodes

can be de�ned as Uses

g

(v) = fu : (9s 2 Dir) length(s) � 1 ^ v

s

;

g

ug.

The path and the used nodes relation are transitive. The following proposi-

tion speci�es it more exactly.

Proposition 1.2.3 Let g be a graph, u; v; w 2 V

g

nodes and s

1

and s

2

be

directions such that u

s

1

;

g

v and v

s

2

;

g

w

(i) there exists a direction s that u

s

;

g

w,

(ii) Uses

g

(u) � Uses

g

(v) � Uses

g

(w).

The picture 1.6 shows graph where all nodes are not accessible from root

r. This is still valid graph but in some cases (as in de�nition 1.6.1) we need

some nodes to be reachable. That is why we present following useful de�nition.

De�nition 1.2.6 Let g be a graph. The node n 2 V

g

is said to be reachable if

there is a root r 2 roots

g

and direction s 2 Dir such that r

s

;

g

n.

1.3 Type graphs

We have de�ned graphs and presented terms like direction, used nodes and

reachable node. In this section we restrict set of graphs to only such ones that

represent valid types. Then the term of subgraph is de�ned.

De�nition 1.3.1 The graph g is a type graph if it is acyclic. The set of all

type graphs is denoted by G . Through the rest of the chapter we work only

with graphs from this set.

12

As illustrated earlier the meaning of one node (and its subtree) and the whole

graph with the node as a root are strongly related. To make the de�nition more

speci�c we introduce the term subgraph, the part of graph under a node rooted

in that node.

De�nition 1.3.2 Let g be a graph and v its node (v 2 V

g

). Then graph

g j v = (V; symb; args; roots) is a subgraph of g at v. The components V , symb,

args and roots are de�ned as follows:

(i) V = fu : (9s 2 Dir) v

s

;

g

ug,

(ii) symb = symb

g

j V (the function symb

g

restricted only to range V),

(iii) args = args

g

j V ,

(iv) roots = hvi (vector with only one node v).

Notation 1.3.1 Let g be a graph. Let u 2 V

g

. The subgraph of g at u that

is denoted as g j u = (V

gju

; symb

gju

; args

gju

; roots

gju

) can also be labeled as

(V

u

; symb

u

; args

u

; roots

u

).

Because the subgraph of V at v contains all nodes accessible (there exists a

direction) from v, it is easy to prove that each path in a subgraph is also the

path in the original graph.

Proposition 1.3.2 Let g be a graph. Let u 2 V

g

. Then (8v; w) v

s

;

gju

w)

v

s

;

g

w.

From this proposition it immediatelly follows that when the original graph

is acyclic the subgraph remains acyclic as well.

Conclusion 1.3.3 Let g be acyclic graph. Let v 2 V

g

. Then g j v is acyclic.

1.4 Comparing types

In the section about Type graphs we could see that one type can have several

graph representations. Therefore it is not su�cient to simply compare sets of

nodes, their symbols, edges and roots to recognize whether two graphs represent

the same type. The relationship between graphs is a little more complicated as

described in this section.

To verify that two graphs represent the same type we �rst of all focus our

attention on the most simple case. We try to compare two graphs with exactly

one root.

De�nition 1.4.1 Let us have two graphs g = (V

g

; symb

g

; args

g

; hui) and h =

(V

h

; symb

h

; args

h

; hvi). Each has exactly one root. Then these graphs are

isomorphic via function f : V ar

g

! V ar

h

, denoted by g '

f

h if all following

conditions are satis�ed:

(i) Dir

g

(u) = Dir

h

(v),

(ii) (8s 2 Dir

g

(u)) symb

g

(s

g

(u)) = symb

h

(s

g

(v)),

13

�

�

&

-

�

�

-

�

?�

�

�

�

-

�

?

-

-

S

S

Sw

?

-

-

�

�

�/

@

@

@R

�

�

�/

J

J

Ĵ

H

H

H

Hj

@

@R

�

�

�

��

-

-

S

S

Sw

[] []

[]

[]

q:

a: b:

[]

p:r:

Figure 1.7: Two equivalent one-root graphs

(iii) f is isomorphism

(iv) (8w 2 V ar

g

)(8s 2 Dir

g

(u)) u

s

;

g

w , v

s

;

h

f(w).

These graphs are called equivalent if they are isomorphic via identity function.

We use g � h to express the equivalency.

The de�nition declares that graphs g and h are isomorphic if their roots have

the same set of possible directions. The same constructor is reached by taking

the same direction from �rst and second root node. Variables from V ar

g

and

V ar

h

are associated to pairs and when the same a direction leads to a variable

from the root of �rst graph the same direction leads from root of graph h to

the associated variable. The di�erence between isomorphism and equivalence is

that variables of both graphs in equivalence must be the same.

Example 1.4.1 Graphs rooted in r and p on picture 1.7 have di�erent sets

of nodes but they represent the same type. Because sets of possible direc-

tions Dir

g

(r) = f�; (0); (0; 0); (1; 0); (1; 0; 0); (1; 1; 0)g = Dir

g

(p), node symbols

symb

g

(s

g

(r)) = symb

g

(s

g

(p)) for each s 2 Dir

g

(r) and all directions leading to

variable node with symbol? (that means (0; 0), (1; 0; 0), (1; 1; 0)) reach the same

node from both roots p and r. The third graph with root q is not equivalent

because it used di�erent variable but is isomorphic via function f(a) = b.

The equivalence on one-root graphs and the way the subgraph can be ob-

tained from a node allow us to compose the de�nition for equvialence on nodes.

De�nition 1.4.2 Let u; v be nodes in graph g. The nodes u and v are equiva-

lent, that is denoted by u �

g

v if g j u � g j v.

We have a way for comparing nodes and we can extend the de�nition from

one-root graphs to all type graphs. Two graphs will be considered equivalent if

all their roots will be equivalent.

De�nition 1.4.3 Let g and h be graphs. They are said to be

(i) equivalent if length(roots

g

) = length(roots

h

) and for each i the i-

th roots are equivalent. Formally (8i < length(roots

g

)) g j (roots

g

)

i

� h j

(roots

h

)

i

,

14

�

�

�

� �

6

&

-

-

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

-

S

Sw

�

�

�

?

�

�

�

?

[]

last: int param:[]

i: Int

Before After

a: a:

[]

last: int param:[]

i: Int

Figure 1.8: Substitution of [Int] as the �rst param of function last

(ii) isomorphic if there exists a function f : V ar

g

! V ar

h

such that for

each i < length(roots

g

) g j (roots

g

)

i

'

f

h j (roots

h

)

i

.

This de�nition is correct with respect to the de�nition of equivalence for

one-root graphs because the de�nition 1.4.3 uses one-root graph de�nition to

compare each root pair. Also, we can easily see that both relations de�ned in

this section are equivalences.

Proposition 1.4.1 The relations � and ' are equivalences. For each graph g

the relation �

g

is also equivalence.

1.5 Substitution on graphs

The function last presented in 1.1.1 has type [a] -> a. As is shown in

example 1.1.2 , lists of integers, reals and other types can be passed as its

parameter. Depending on the input parameter, the result is then integer or

real. The process during which the type variable a is associated with Int or

Real is called substitution.

Example 1.5.1 The picture 1.8 shows what happens when Int is substituted

instead of variable a. All edges leading to node a are redirected to the node i.

Redirections are valid only on edges to variable nodes (symb

g

(n) =?).

Therefore substitution could be described by function f : V ar

g

! V

g

that

could assign a new node to each variable. Such a partial function would compli-

cate their composition and for this reason we will represent it as function with

full domain V

g

but restrict that for each n 62 V ar

g

it must be constant.

De�nition 1.5.1 Let g be a graph. Let f : V

g

! V

g

be a function.

(i) f is called substitution on g if fv 2 V

g

: f(v) 6= vg � V ar

g

,

15

(ii) result of applying substitution f to graph g is graph denoted by f(g) =

(V

g

; symb

g

; args; roots) where

(8v 2 V

g

)(8i) args(v)

i

= f(args

g

(v)

i

)

length(roots) = length(roots

g

)

(8i) roots

i

= f((roots

g

)

i

)

(iii) substitution f is called valid if the graph f(g) is acyclic.

Substitutions can be composed. One can be applied after another. Because

they are represented by functions, these functions can be composed to one too.

Is the resulting function also a substitution? Is the result of applying all sub-

stitutions and the composed one the same? The following lemma answers these

questions.

Lemma 1.5.1 Let g be a graph. Let f

1

, f

2

be substitutions on g. Then

(i) f

1

is a also substitution on graph f

2

(g),

(ii) (f

1

� f

2

) is a substitution on g,

(iii) (f

1

� f

2

)(g) = f

1

(f

2

(g)).

Proof. First of all let us notice that even if the second substitution uses

variables that already have been substituted by the �rst substitution, there are

no problems with it. The �rst substitution redirects edges leading in the original

graph to substituted variables to di�erent nodes in the mid-resulting graph and

that is why the second substitution has no a�ect on these variables. This seems

to be one of the great advantages of our theory. Keep it in mind and let us

provide exact proof for each step.

(i) The only requirement for a function on graph nodes to be substitution

is that the function is constant on nonvariable nodes. Because V

f

2

(g)

= V

g

and

V ar

f

2

(g)

= V ar

g

, it is easy to obtain that fv : f

1

(v) 6= vg � V ar

g

= V ar

f

2

(g)

.

The f

1

is substitution on graph f

2

(g),

(ii) Let f = (f

1

� f

2

). The set fv 2 V

g

: f(v) = vg � fv 2 V

g

: f

1

(v) =

v^ f

2

(v) = vg. From this we get the result that fv 2 V

g

: f(v) 6= vg � fv 2 V

g

:

f

1

(v) 6= vg

S

fv 2 V

g

: f

2

(v) 6= vg � V ar

g

. For this reason f

1

�f

2

is substitution

on g.

(iii) Let h

1

= (f

1

�f

2

)(g) and h

2

= f

1

(f

2

(g)). Then evidently V

h

1

= V

g

= V

h

2

and symb

h

1

= symb

g

= symb

h

2

. The i-th root changes to f

1

(f

2

(roots

g

i

)) =

(f

1

�f

2

)(roots

g

i

)). Therefore the only thing that is not so clear is the equivalence

of args

h

1

and args

h

2

. Let v 2 V

g

. Then args

h

1

(v) = (f

1

� f

2

)(args

g

(v)) =

f

1

(f

2

(args

g

(v))). In the same manner we get args

h

2

(v) = f

1

(args

f

2

(g)

(v)) =

f

1

(f

2

(args

g

(v))). So, it is right that h

1

= h

2

. 2

The substitutions can be used for comparing the generality of graphs. We

can say that one graph is more general than the other if the former represents

a type which can create the latter type by a substitution.

De�nition 1.5.2 Let g and h be graphs.

16

a:

-

r:

a:

-

r:

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

J

J

Ĵ

�

J

J

Ĵ

�

�

J

J

Ĵ

H

H

H

H

Hj

S

S

Sw

Before After

[]x: y:[]

i: Int

[]x: y:[]

i: Int

Figure 1.9: Substitution of f(a) = i

(i) We say that g is more general than h via substitution f and denote it

by g �

f

h if f is valid substitution on g and h � f(g),

(ii) graph g is said to be more general than h (notated as g � h) if there

exists a substitution f such that g �

f

h.

There is a relationship between substitution and equivalence. Whenever

two nodes in a graph are equivalent, they will remain equivalent in any graph

that can be obtained by a substitution. The picture 1.9 shows that equivalent

nodes x, y remain equivalent after applying substitution f(a) = i. The following

lemma claims that this behaviour is common for all substitutions in this chapter.

Lemma 1.5.2 Let v

1

and v

2

be nodes in graph g. Let f be a valid substitution

on g. Let graph h = f(g). Then v

1

�

g

v

2

) f(v

1

) �

h

f(v

2

).

Proof. At �rst we should realize that if there is a direction s =

hs

0

; : : : ; s

k

i leading to node w 2 V

h

by means of v

1

s

;

h

w, then there are two

possibilites:

(i) if there exists l � k and u 2 V ar

g

such that direction s = hs

0

; : : : ; s

l

i

leads in graph g from v

1

to node u, then by following the direction s in graph h

we get into f(u). So f(v

1

)

s

;

h

f(u). Because v

1

�

g

v

2

the direction s from v

2

in

graph g leads into u too and the result is that f(v

2

)

s

;

h

f(u). It is obvious that

by concatenting the rest of direction s to s, we get f(v

2

)

s

;

h

w. The direction

from both f(v

1

) and f(v

2

) leads to the same node.

(ii) if there is no such l then v

1

= f(v

1

), v

2

= f(v

2

) and also in graph

g v

1

s

;

g

w. Follow in the direction s from v

2

. There is a node u such that

v

2

s

;

g

u. It is not necessary that u = w, but because v

1

�

g

v

2

we know

that symb

g

(w) = symb

g

(u), and because u;w 62 V ar

g

we can be sure that

symb

h

(w) = symb

h

(u).

From both posibilities mentioned above, we get Dir

h

(f(v

1

)) = Dir

h

(f(v

2

)),

that for each direction the symbols on the path from v

1

and v

2

are the same

and that when a direction leads to a variable from v

1

, it leads to the same

variable from v

2

. The conclusion is that f(v

1

) �

h

f(v

2

). 2

17

In conclusion, we prove lemma that discovers behaviour of � relation.

Lemma 1.5.3 The relation � is reexive and transitive.

Proof. Let g be any acyclic graph. We can de�ne function id(x) = x for

each x 2 V

g

. Then g = id(g) and id is a valid substitution on g. That is why

g � g.

Let g

1

�g

2

and g

2

�g

3

. Then, there are valid substitutions f

1

and f

2

such that

g

2

� f

1

(g

1

) and g

3

� f

2

(g

2

). We know that f

1

� f

2

is also a valid substitution

on g

1

and that (f

1

� f

2

)(g

1

) = f

2

(f

1

(g

1

)) � f

2

(g

2

) � g

3

. That is why g

1

� g

3

via f

1

� f

2

and the transitivity condition of � is satis�ed.

The relation between � and ' is expressed by following lemma.

Lemma 1.5.4 Let g and h be graphs. Let g � h and h� g. Then there exists

a function f : V ar

g

! V ar

h

such that g '

f

h.

Proof. There are substitutions l; k such that g �

l

h and h�

k

g. The �rst

step is to prove that functions l and k must map each reachable variable node

to another variable node.

Suppose that there is a direction s leading from i-th root of graph g (let us

denote it as r

g;i

) to a variable s

g

(r

g;i

) 2 V ar

g

and that the same direction does

not lead to any variable from i-th root of graph h. s

h

(r

h;i

) 62 V ar

h

. The graphs

have the same set of variables V ar

g

= V ar

h

because they are related by �.

The node n = s

h

(r

h;i

) is not variable. That is why the substitution k cannot

alter it, so k(n) = n = s

k(h)

(r

k(h);i

). As a result symb

k(h)

(s

k(h)

(r

k(h);i

)) 6=?.

Because h�

k

g the graphs k(h) � g and symb

g

(s

g

(r

g;i

)) 6=? but this cannot be

true. We supposed something else. For this reason for each v 2 V ar

g

and v is

reachable l(v) 2 V ar

h

. The reverse direction for the substitution k is obviously

true too.

The second part of the proof is to test whether the substitutions l and k are

monomorphic on reachable variables.

Suppose that there are directions s and t leading to di�erent variables from

any roots in graph g. s

g

(r

g;i

); s

g

(r

g;j

) 2 V ar

g

= V ar

h

and s

g

(r

g;i

) 6= s

g

(r

g;j

). In

the graph h these directions must lead to variables, suppose that they lead to the

same variable s

h

(r

h;i

) = s

h

(r

h;j

) 2 V ar

h

. Then after applying the substitution

k(s

h

(r

h;i

)) = k(s

h

(r

h;j

)) and for this reason s

g

(r

g;i

) = s

g

(r

g;j

). This contrasts

with our assumption. We proved that for each pair of di�erent rechable variables

u; v 2 V ar

g

the l(u) 6= l(v). Similiarly for the second substitution.

Finally we de�ne function f : V ar

g

! V ar

h

as

f(u) =

8

<

:

l(u) if u is reachable in graph g

v if k(v) = u and v is reachable in graph h

u otherwise

Even the �rst two conditions can occur together, we can be sure that the de�-

nition of function f is correct because graphs g � k(l(g)) and for each v 2 V

g

the k(l(v)) = v. The proof is done because g '

f

h. 2

18

a:

�

�

-

?

�

J

J

Ĵ

[]

last:

param:

String

[]

formal:

Figure 1.10: last ["Hello", "World"]

1.6 Node Equalities

A set of equalities on a graph g is a set of node pairs. Each equality desire the

node pair to be equivalent in some graph. We say that such graph h is solution

if it is less general then g and all nodes in pairs are equivalent.

Example 1.6.1 Equalities are created from any functional expresion. For ex-

ample, the well know example with function last ["Hello", "World"] creates

a graph on picture 1.10 . Since the type [String] is applied as the �rst argument

of function last, the set of equalities contains one pair (formal; param),

De�nition 1.6.1 Let g be a graph. The set of equalities is any pair (g;M),

where M � fu � v : u; v are reachableg.

The reason why nodes must be reachable from roots is that we want equiv-

alent graphs (g � h) to behave similarly. However, since the equivalence of

graphs depends only on reachable nodes, we have to restrict the equalities to

use only these nodes.

When a substitution is applied on a graph, a new graph is produced. Also,

when applied on a set of equalities, the equalities must change. The natural

way is to convert node pairs by use of the substitution function.

De�nition 1.6.2 Let (g;M) be a set of equalities. Let f be a valid substitution

on g. Applying substitution f onM is denoted as f(M) and declared as f(M) =

ff(u) � f(v) : u � v 2Mg.

The new set of equalities (f(g); f(M)) is valid because all node pairs from

f(M) remain reachable in graph f(g).

De�nition 1.6.3 Let pair (g;M) be a set of equalities. Then

(i) graph g is the solution of M if (8 (u � v) 2M) u �

g

v,

(ii) The set of solutions of (g;M) is Sol

g

(M) = fh : (9f) f is a valid

substitution on g ^ h ' f(g) ^ f(g) is the solution of f(M)g,

(iii) graph h is the most general solution, if for each solution r 2 Sol

g

(M) it

is true that h� r.

19

The point (ii) of the de�nition guarantees that if a graph is a solution, then

all isomorphic graphs are also solutions. Also, there can be more most general

solutions but all of them are isomorphic.

Proposition 1.6.1 Let h

1

; h

2

2 Sol

g

(M) be most general solutions. Then

h

1

' h

2

.

Proof. h

1

� h

2

and h

2

� h

1

. From lemma 1.5.4 h

1

' h

2

.

The transitivity of � allow us to prove following lemma. As a result, we

obtain that if there is a solution, all less general graphs are also solutions.

Lemma 1.6.2 Let h

1

2 Sol

g

(M) and h

1

� h

2

. Then h

2

2 Sol

g

(M).

Proof. The h

1

� h

2

implies that there is a substitution f

1

such that

h

2

= f

1

(h

1

). Also, because the h

1

2 Sol

g

(M), we know that there is substitution

f

2

that h

1

� f

2

(g). From that and lemma 1.5.1 we get that h

2

� f

2

(f

1

(g)) =

(f

2

� f

1

)(g). That is why h

2

2 Sol

g

(M). 2

1.7 Algorithm for Solving Equalities

An algorithm is presented in this section that takes a graph and set of equalities,

and �nds out whether there is a solution, and if so, it �nds the most general

one. During processing the algorithm either fails, then there is no solution for

the given graph and set of equalities, or it succeed and produces a graph. The

graph is less general then the original given on input and satis�es all conditions

from the set of equalities. The program is written in functional languages-like

pseudo code extended with operations from Theory of Sets.

EqSolve :: (Graph, Set of Equalities)! Graph;

EqSolve (g, ;) = g; // case 0

EqSolve (g, fu � vg [M)

| u == v = EqSolve (g, M); // case 1

| symb

g

(u) == ? ^ u 2 Uses

g

(v) = FAIL; // case 2

| symb

g

(u) == ? = EqSolve (f(g), f(M)) // case 3

where {

f :: V

g

! V

g

;

f u = v;

f x = x;

};

| symb

g

(v) == ? = EqSolve (g, fv � ug [M); // case 4

| symb

g

(u) <> symb

g

(v) = FAIL; // case 5

| otherwise = EqSolve (g, M [

S

i

fargs

g

(u)

i

� args

g

(v)

i

g); // case 6

Algorithm 1.1: Algorithm for solving of equations

20

�

�	

@

@R

@

@R

�

�	

y1:Int y2:Bool

x:(,)

x1:Int x2:Bool

y:(,)

Figure 1.11: Equivalence of nodes by equivalence of subnodes

1.8 Correctness of the Algorithm

This section is dedicated to the proof that when EqSolve(g;M) succesfully

�nishes, it really �nds the most general solution of (g;M), M on g and that

when it fails there is no solution.

First of all we take a deeper look at the behaviour of relation � as de�ned

in 1.4.2 . Two variable nodes are equivalent only if they are identical, since

between equivalent nodes all variables must be shared. A proposition follows.

Proposition 1.8.1 Let g be a graph and u; v 2 V ar

g

. Then u �

g

v , u = v.

There is another rule for nonvariable nodes. In the example 1.11 , nodes x,

y are equivalent because they have the same constructor symbol assigned and

their subnodes x

1

, y

1

and x

2

, y

2

are equivalent. This behaviour is not bound

only to this example, but is generic as is shown in the following lemma.

Lemma 1.8.2 Let g be a graph with nodes u; v 62 V ar

g

. Then u �

g

v ,

symb

g

(u) = symb

g

(v) ^ (8i) args

g

(u)

i

�

g

args

g

(v)

i

.

Proof. ")" When we consider zero length direction and equivalence

condition (ii) in the de�nition 1.4.1 , we see that symb

g

(u) = symb

g

(v).

We should then realize that for each i and each direction s from args

g

(u)

i

or args

g

(v)

i

there is appropriate direction t = (i; s

0

; : : : s

length(s)�1

) such that

t

g

(u) = s

g

(args

g

(u)

i

) and t

g

(v) = s

g

(args

g

(v)

i

). Because all equivalence condi-

tions for direction t are satis�ed they are also satis�ed, for direction s. Therefore,

args

g

(u)

i

�

g

args

g

(v)

i

,

"(" The reverse direction is nearly same. We know that any direction t =

(t

0

; : : : t

k

) from u is also the direction from v because symb

g

(u) = symb

g

(v) (this

implies that jargs

g

(u)j = jargs

g

(v)j). We also known that the �rst element of t

leads (from u and v) to nodes that are equvivalent args

g

(u)

t

0

�

g

args

g

(v)

t

0

. As

a result the rest of direction (t

1

; : : : ; t

k

) satis�es the conditions for equvivalence

and from this u �

g

v. 2

The main goal of this chapter, the proof of correcteness of the algorithm

EqSolve, is formulated in following theorem.

Theorem 1.8.3 Let (g, M) be any set of equalities. Then

(i) when Sol

g

(M) 6= ; EqSolve �nds a most general solution.

(ii) when Sol

g

(M) = ; algorithm EqSolve stops showing that there is no

solution.

21

?

a:

r:[]

Figure 1.12: Used node

Proof. The EqSolve takes pair (g;M) and either produces a result, fails or

transforms the pair to another one (h;N) and calls itself again with the new

parameter.

In the proof, we study each case that can occur in the algorithm, and if it

produces a result, we claim that it is a most general one. If it fails, we prove

that Sol

g

(M) = ;. When it proceeds with recursion, we prove that Sol

g

(M) =

Sol

h

(N) for each step, so the set of solutions does not change during execution

of algorithm 1.1 .

The proof is split into a few sections, each studying one case occuring in the

algorithm.

Case 0

EqSolve (g, ;) = g;

This case is choosen when there are no equalities to solve. The Sol

g

(;) = fh :

g � hg. The graph g is the most general solution, and the algorithm produces

the right result.

Case 1

EqSolve (g, fu � vg [M) | u == v = EqSolve (g, M);

For any h 2 Sol

g

(M) node u �

h

u. Then h 2 Sol

g

(fu � ug [M). We can

omit equation (u; u) because it does not a�ect the result.

Case 2

EqSolve (g, fu � vg [M) | symb

g

(u) == ? ^ u 2 Uses

g

(v) = FAIL;

An example of this situation is drawn in �gure 1.12 . It occures when a

variable (in the example a) should be made equivalent to a node that uses the

variable (node r). As shown by the following lemma, this is not possible until

we allow cyclic graphs, and as a result the algorithm has the full right to fail.

Lemma 1.8.4 Let (g; fu � vg[M) be a set of equalities and let u 2 V ar

g

and

u 2 Uses

g

(v). Then Sol

g

(fu � vg [M) = ;.

22

Proof. Let h 2 Sol

g

(fu � vg [M). Then, there is a substitution f such

that f(g) ' h. Because the node v is not variable, f(v) = v. In the resulting

graph after substitution, f(u) �

f(g)

v. From this, we see that Dir

h

(f(u)) =

Dir

h

(v).

Now let us take the longest direction that can be followed from v and call it t.

Because f(u) 2 Uses

f(g)

(v), there exists a direction s which length(s) � 1 such

that v

s

;

g

f(u). It is important to realize that when we take direction s from v,

we get to f(u), but here we can continue along direction t. For this reason the

concatenation st 2 Dir

f(g)

(v). However, this conicts with our assumption that

t is the longest possible direction. f(g) is not a valid solution and because the

assumed graph h is equivalent with it, the graph h is not valid solution either.

The result is that Sol

g

(fu � vg [M) = ;.2

Case 3

EqSolve (g, fu � vg [M) | symb

g

(u) == ? = EqSolve (f(g), f(M))

where f(x) = if (x == u) v x

When the algorithm is about to solve equality of a variable and any other

node v, it simply creates new substitution that assignes to the variable the

node v. Other nodes are not substituted. The following lemma proves that

this behaviour is su�cient because the new set of equalities has the same set of

solutions as the original one.

Lemma 1.8.5 Let (g; fu � vg[M) be set a of equalities and let u 2 V ar

g

and

u 62 Uses

g

(v). Then Sol

g

(fu � vg [M) = Sol

f (g)

(f (M))) where

f(x) =

�

v if x = u

x otherwise

Proof.

"(" Let h be a substitution such that graph h(f(g)) 2 Sol

f (g)

(f (M)). The

f(u) = f(v) holds because of the de�nition of substitution f . This equal-

ity implies that f(u) �

f(g)

f(v) and from lemma about substitutions (1.5.2

)h(f(u)) �

(h�f)(g)

h(f(v)). That is why graph (h � f)(g) 2 Sol

g

(fu � vg [M).

")" Similary, h will be a substitution and h(g) 2 Sol

g

(fu � vg [M). For

this reason h(u) �

h(g)

h(v). To �nish the proof it would be su�cient to claim

that h(g) ' (h � f)(g). It can be done by proving that for each x; y 2 V

g

the

x �

h(g)

y , x �

(h�f)(g)

y. From lemma 1.8.1 we see that if symb

h(g)

(x) =?

then x = y, and the solution is correct. If the node x is not variable, then from

1.8.2 we need if for each i is satis�ed args

h(g)

(x)

i

�

h(g)

args

h(g)

(y)

i

to satisfy

the same also in graph (h � f)(g). Because the di�erence between h and h � f is

only in node u

(h � f)(x) =

�

h(x) if x 6= u

h(v) if x = u

23

Either the edges in graphs h(g) and (h�f)(g) lead into the same node, and then

the similiarity is clear or the edge in h(g) leads to u and in the graph (h � f)(g)

leads to v. Because subtrees h(g) j u and (h�f)(g) j v are equivalent there is no

di�erence between their nodes. Therefore the whole graphs h(g) � (h � f)(g).

2

Case 4

EqSolve (g, fu � vg [M)

| symb

g

(v) == ? = EqSolve (g, fv � ug [M);

When a variable occurs on the second position in a equation, we rotate it

and pass it again to the algorithm. Because the � is equivalence, the resulting

set is the same.

Due to the semantics this case is activated only if symb

g

(u) 6=?, otherwise

the case 2 or case 3 are choosen.

Case 5

EqSolve (g, fu � vg [M) | symb

g

(u) <> symb

g

(v) = FAIL;

If an equation of two nonvariable nodes occures and they represent di�erent

constructor symbols, the set of equations does not have a solution. The proof

is given in following lemma.

Lemma 1.8.6 Let (g; fu � vg [M) be set of equalities. Let u; v 62 V ar

g

and

symb

g

(u) 6= symb

g

(v). Then Sol

g

(fu � vg [M) = ;.

Proof. Let f again denote substutition and h graph h = f(g) such that

h 2 Sol

g

(fu � vg [M). Then f(u) �

h

f(v) but because u; v 62 V ar

g

then

u = f(u) and v = f(v) but symb

h

(u) = symb

g

(u) 6= symb

g

(v) = symb

h

(v).

That is why h is not a solution for the set of equalities. 2

Case 6

EqSolve (g, fu � vg [M)

| otherwise = EqSolve (g, M [

S

i

fargs

g

(u)

i

� args

g

(v)

i

g);

The last case occurs when an equation of two nodes with the same symbol

is found. As is shown in the next lemma, the equation can be successfully

substituted by equations on subnodes without any change to the set of solutions.

Lemma 1.8.7 Let (g; fu � vg [M) be set of equalities. Let u; v 62 V ar

g

and

symb

g

(u) = symb

g

(v). Then

Sol

g

(fu � vg [M) = Sol

g

(M [

[

i

fargs

g

(u)

i

� args

g

(v)

i

g)

24

Proof. Again let f denote a substutition and h graph h = f(g) such that

h 2 Sol

g

(fu � vg [M). Because neither u or v represents a variable f(u) = u

and f(v) = v. From lemma 1.11 we know that u �

h

v , (8i) args

h

(u)

i

�

h

args

h

(v)

i

. That is why we need to satisfy only equivalences of all arguments:

h 2 Sol

g

(M [

[

i

fargs

g

(u)

i

� args

g

(v)

i

g)

The proof of theorem 1.8.3 is �nished. 2

1.9 Finiteness of the Algorithm

In this section the algorithm 1.1 is proven to be �nite for any given input. It

is shown that after �nite number of computational steps the algorithm either

fails or successfully stops for any graph g and set of equalities M .

The function EqSolve has no loops and only recursion can cause in�nite

computation. To prove that this cannot happen, we present the following lemma

with detailed proof based on computation of potential functions.

Lemma 1.9.1 Let M be a set of equalities on graph g. The computation of

EqSolve(g;M) will terminate after �nite number of steps.

Proof. Let us de�ne a few potential functions that assign a positive

number to each graph g and set M . The �rst function describes the state of set

of equalites on graph g. It is de�ned as sum of the number of nodes in subgraphs

of each elements in set of equalities. Exactly:

�

1

(g;M) =

X

u�v2M

jV

gju

j+ jV

gjv

j

For each g and M �

1

is bounded to 0 � �

1

(g;M) � 2jV

g

jjM j � 2jV

g

j

3

because

the set M � V

g

� V

g

. The second function describes the state of the graph

and does not depend on set of equalities. It counts number of variable nodes

reachable (there is a direction leading into the node) from any root of graph g.

More exactly:

�

2

(g) = # of reachable variables

The function is also never negative. We show that for each of its cases 0{6

the algorithm 1.1 decreases at least one of these functions. As a result we see

that the algorithm must �nish.

� case 0 { the algorithm does not continue in recursion and succesfully �nishes,

� case 1 { the recursion goes on but because �

1

(g; fu � vg [M) > �

1

(g;M)

potential �

1

is decreased and �

2

remains the same,

� case 2 { the process fails and �nishes,

� case 3 { similiarly as in case 1 the potential �

1

is decremented and �

2

does

not change,

� case 4 { there is no change in potential �

1

or �

2

but the EqSolve is called

with di�erent arguments that guarantee that the next chosen case is either case

25

3 or case 2 and therefore either the function �

1

is decremented or the algorithm

�nishes,

� case 5 { the program stops unsuccessfully,

� case 6 { potential �

1

can grow but only up to jV

g

j

3

. The second potential �

2

decreases by one, because for any substitution f , after applying substitution it

the variable node u is not accessible anymore.

To prove that the algoritm is �nite, we now de�ne a new potential function

composed from previous two:

�(g;M) = 2jV

g

j

3

�

2

(g;M) + �

1

(g;M)

It is constructed in a way that guarantees that its value decreases in each case of

algorithm EqSolve. As a result we can say that the function EqSolve �nishes

for every argument. 2

1.10 Conclusion

In this chapter, we have presented typing theory in terms of graphs. The theory

is not new, but is given in new, unusual and precise terms. We have shown that

the theory is strong enough to represent the polymorpic types introduced by

Hindley/Milner.

We developed basics for comparing graphs to �nd out whether two graphs

represent the same type and also whether a graph is more general than another.

We de�ned equations on graph nodes, their solution and also the meaning of

the most general solution.

We have shown the algorithm EqSolve for solving sets of equations. We

claimed that the algorithm is in all cases correct and �nite and that if there is

a solution, then it �nds one of the most general ones.

26

Chapter 2

Subtyping

Types, subtypes and their hierarchy are discussed in this chapter. First of all the

proposition of extension of the function language Clean is provided so Clean's

record types are turned into objects types connected between each other by a

super type relation.

After that we extend the de�nition of the graph from previous chapter to

reect the relation between types. We focus only on types derived from one

common super type. We study the proposed features of the implementation

and give the requirements on the constructors and set of types. We discuss

the relation between di�erent types and, as in the non-subtyping case where we

used equalities, we de�ne set of inequalities, we de�ne what it means for the

set to have a solution and provide an algorithm that can check whether a given

graph satis�es conditions stated by the set of inequalities.

We also study the reasons why the graph model cannot be used to describe

types with subclassing. The discussion shows the di�erences between Hind-

ley/Milner and extended types.

2.1 Code reuse vs. subtyping

It is usual in object oriented languages like Smalltalk, C++ and Java that one

can extend already de�ned type by adding some behaviour and create a new

subtype that can be used anywhere the original can. But we should realize

that there is a di�erence between extending for code reuse and extending for

creation of subtype. Neither C++ or Java distinguish it. It results into few

quaint situations.

Example 2.1.1 For example the window toolkit classes java.awt.Frame and

java.awt.Button extend base class for all visuals java.awt.Component. Any

Component and its subclasses (e. g. Button) can be added to a frame. But

can Frame be added to another Frame? No, it cannot. It is an example of

subclassing that reuses the code but should not create a subtype. It is not

27

possible to express such behaviour in the Java language without writing a lot

of useless code.

The focus of this chapter is not concerned on reuse of code neither are

concerned implementation details. We focus on subtype relation theory that

is not based on detailed knowledge of implementation. We are interested in

studying the conditions which allow subtype to be used in place of supertype.

2.2 Records and Objects

There is a special type in the Clean language [2] that collects more named types

into one (see program 2.1). The extension expressing relation between records

should allow to specify which record the newly de�ned extends. It should also

enable us to extend records parametrized with type variables. The syntax is

shown at 2.2 .

// record with two reals

::Point = { x :: Real, y :: Real }

// record with type variables

::ElementAndList a = { element :: a, list :: [a] }

// record in record

::IntRealRecord = {

i :: ElementAndList Int,

r :: ElementAndList Real

}

Algorithm 2.1: Records in Clean

// type Circle that extends type Point and

// adds new field radius

::Circle = { Point & radius :: Real }

// simple object type

::SimpleType a b = { Object & first :: a, second :: b }

// composite derived type

::Type a b c = { SimpleType [a] (b -> c) & value :: [a] -> b}

Algorithm 2.2: Object extension to Clean

Unlike to the previous chapter the constructor is not speci�ed only by its

arity but also by its super type. Figure 2.1 describes how the type is connected

to the super node. Dotted lines are used to assign the super type of nodes.

28

6

& %

6

& %

6

" %

-

-
..

-
..

@

@

@

@R

?

�

�

�

�	

�

S

S

S

Sw

Type SimpleType

[]

Object

Figure 2.1: Type derived from SimpleType

We suppose that all types are derived from a basic type. Let us call it Object .

It has no super type. But this is the only exception. All other types are required

to have exactly one.

In usual object oriented languages the type has an immutable super type.

We keep this model and extend it to types with type variables. Each constructor

(except the Object) has a super type assigned. This type uses only variables

provided by the constructor (as can be seen on �gure 2.1). Dotted horizontal

lines are used to express the super type relationship, full lines have the same

meaning as in the previous chapter, describing type arguments.

Type with type variables can be used to form less general type by substitu-

tion of concrete types. The super type then changes appropriately. For example

Type Int Real Char extends SimpleType [Int] (Real -> Char).

2.3 Extended Graphs

In this section the de�nition of the graph from the previous chapter is modi�ed

to express the superclass relationship between types. A graph for super type is

assigned to each constructor and �nally the set of extended graphs is de�ned.

To express the the super relation we slightly extend the de�nition of type

graph from the previous chapter.

De�nition 2.3.1 An extended graph g is composed of the following �ve sets

(V; symb; args; sups; roots) where (V; symb; args; roots) form a graph (without

superclass relationship) and sups : V ! V

S

fNoSuperg assignes to each node

its super node. The set of nodes without super type is Base

g

= fn 2 V :

symb(n) = Objectg. Moreover the following must be satis�ed:

(i) for each n 2 V the node sups(n) 62 V ar

g

, guarantees that variable

cannot be super type and

(ii) fn : sups(n) = NoSuperg = Base

g

S

V ar

g

ensures that exactly set of

nodes representing Object and variables does not have super type.

As in chapter one we will work only with acyclic graphs. Because of the

addition of the super relationship between nodes we have to slightly modify

29

�

�

�=

B

B

B

B

B

BN

�

�/

�

�

�

�=

-
...

-
..

*

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

:

.
.

.

.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.

.

.
.
.
.
.
.
.
.
.
.

.

.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.

.

.
.
.
.
.
.
.
.
.
.

.

.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.

.

.
.
.
.
.
.
.
.
.
.

.

.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.

.

.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.

.

.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.

.

.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.

.

.
.
.
.
.
.
.
.
.
.

.

A

A

AU

r:Two

[]

p:One s:Object

q:[]

b:

Figure 2.2: Directions on extended graphs

this term. This modi�cation alters the meaning of many of the following terms

whose de�nitions are based on direction. In this chapter we work only with

extended graphs, so the change of de�nition should not be confusing.

De�nition 2.3.2 Let g be extended graph and let v 2 V

g

. Then

(i) Direction is any element of Dir = (N

S

fSg)

�

,

(ii) Path along direction s 2 Dir is any p 2 V

g

�

where length(p) =

length(s) + 1 and for each i < length(p) where

p

i+1

= args

g

(p

i

)

s

i

if s

i

2 N

p

i+1

= sups

g

(p

i

) if s

i

= S

Terms mentioned in following paragraphs remain unchanged as in the pre-

vious chapter but use the new de�nition of direction. This includes possible

direction from node u de�ned as the direction for which there is a path along

it starting from u. The de�nition of set of all possible directions from a node is

unchanged, using the extended directions.

Example 2.3.1 Type Two [a] b on �gure 2.2 extends One [b]which extends

Object. Possible directions from the root r are (S;S), (S; 0;S), (S; 0; 0), (0;S),

(0; 0), (1) and the zero length direction.

The result of an application of direction to a node is a node such that the

direction leads from the �rst node to it.

Example 2.3.2 The set of used nodes now also includes super nodes. On �gure

2.2 the Uses

g

(p) = fb; q; sg.

The cyclic graph is still de�ned as the one that contains node v for which

there is a direction s with length(s) � 1 such that v

s

;

g

v. The direction can

use super edges as is shown at 2.3

Because the meaning of used nodes is a slightly di�erent the way subgraph

is constructed changes appropriately. A subgraph of graph (2.2) rooted at p

consists of nodes fp; b; q; sg and edges between them.

Nearly all nodes have super node, and it can have another one, and so on.

That is why we de�ne a set that assignes all super nodes to each node. We use

the directions composed only from S (super direction) for this purpose.

30

�

�

�

�

��

A

A

A

A

AU

�

�

�

-
...

�

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

j

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

�

�=

*

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

�

�

�

�

�9

Real

Object

Int

[]

Two

One

Figure 2.3: Cyclic extended graph

a:

�

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

-..

-.................................

-..

�

�

�

�

��

?

�

�

�+

�

�

�=

A

AU

[]

Object

Int Real

b:

FirstSecond

Figure 2.4: Constructor Second

De�nition 2.3.3 Let g be a graph and n 2 V

g

. The set of all super nodes for

a node n is supers

g

(n) = fu 2 V

g

: (9s 2 S

�

) n

s

;

g

ug.

2.4 Constructors

In this section some existing object oriented languages are studied and some

requirements for our type theory are stated. Then the de�nition of constructors

from chapter one is extended to satisfy the requirements. The basic set of

constructors is de�ned and �xed for the rest of this chapter.

The constructors in the previous chapter were represented by the given set

C and their arity. This can remain but to represent the hierarchy of graphs to

each constructor (other then Object and ?) the super type must be assigned.

In object oriented languages like Smalltalk and Java where each type has

one super type, the type is �xed during runtime. This restriction is meaningful

because by creation of a new subtype one reuses and modi�es code of the super

object. That is why we suppose that the super type for any constructor must

remain the same too. During de�nition of own constructor, the programmer can

specify its name, arity and super type. The super type can use only variables

introduced by the constructor.

Example 2.4.1 In �gure 2.4 the constructor Second with arity two is de�ned.

It establishes two variables a and b and extends type First [b] Int. In our

extension to Clean records the constructor Second shown on picture 2.4 would

be introduced by the code Second a b = { First [b] Int & ... }.

31

r: Object

Figure 2.5: Graph for type Object

Another question that comes to mind is when we know that A is a super

type of B, is [A] also super type of [B]? It seems reasonable to answer yes,

because all operations on the list of A can also be performed on the list of B.

But other constructors may behave in di�erent ways. For example the function

constructor X -> Y is super type of A -> B if and only if Y is super type of B and

A is super type of X. So the constructor -> is covariant in the former argument

and contravariant in the latter.

// unused argument a

::Unused a = { Object & variable :: Int }

Algorithm 2.3: Unused argument of a type

// contravariant and covariant argument

::Restricted a = { Object & function :: a -> a }

Algorithm 2.4: Contravariant and covariant argument

There are also other possiblities. There can be argument that can change

without any restriction and still create new subtypes (see 2.3) and also re-

stricted parameter that cannot change (see 2.4).

De�nition 2.4.1 The set of constructors is speci�ed by the immutable set

C , arity function arity : C ! N , function hierarchy that to each construc-

tor assignes representing extended graph and function variance : V ar

g

!

fr;4;2;3g

�

. So each argument has given variance kind.

Restriction to function hierarchy will be discused later. At present only

length(variance(c)) = arity(c) must hold for each c 2 C . Each set of construc-

tors will de�ne a set of types that can be created from these constructors.

De�nition 2.4.2 Let D � C . The set of extended graphs over these construc-

tors is denoted by G

D

and de�ned as the set f(V

g

; symb

g

; args

g

; sups

g

; roots) :

(9f substitution)(9c 2 D) g � f(c) ^ roots 2 V

g

�

g.

Now we give additional restriction to the set C . We sort all constructors and

index them by integers. Let it be ordered by integers C = f?g

S

fc

0

; c

1

; : : :g.

Moreover c

0

= Object . Let C

i

= fc

0

; : : : ; c

i

g. The i+1-th constuctor's subclass

must be de�ned in the set of types created from the previous i constructors.

32

-...

-
..

-
..

?

ObjectRealInt

Object[]

Figure 2.6: Standard types

De�nition 2.4.3 The de�nition of function hierarchy must satify:

(i) hierarchy(Object) = graph in �gure 2.5 with root r, formally speaking

(frg; f(r;Object)g; f(r; �)g; hri; f(r;NoSuper)g),

(ii) g j sups

g

(r) 2 G

C

i

, where g = hierarchy(c

i

+ 1) is an acyclic extended

graph. r is its only root and symb

g

(r) = c

i

. The set of variables is restricted to

V ar

g

= fargs

g

(r)

i

: i < arity(c

i

)g.

Notation 2.4.1 The set of graphs over all constructors is denoted by G =

S

1

i=0

G

i

, where G

i

is set of graphs over fc

0

; : : : ; c

i

g.

The step by step method of construction of G reects the process of intro-

duction of new types in the program. It guarantees that no constuctor has itself

as super type. Moreover it allow us to prove lemma showing that for graphs

from G we need not care about the super type when comparing two nodes for

equivalency. It is su�cient to compare symbols and arguments.

Lemma 2.4.2 Let g 2 G , let u; v 2 V

g

and u; v 62 V ar

g

. Then

u �

g

v , symb

g

(u) = symb

g

(v) ^ (8i) args

g

(u)

i

�

g

args

g

(v)

i

Proof. ")" Simplier case. As shown in lemma 1.8.2 from the previous

chapter and because the equivalence here is an extended case of the equivalence

used there (directions can reach super type also), two equivalent nodes must

have same symbols and equivalent parameters.

"(" Because symb

g

(u) = c = symb

g

(v) both graphs were created from

the same shape for constructor c, the graph g = hierarchy(c) with root r, by

di�erent substitutions. Each assigns the i-th constructor variable i-th argument

of the node (f

u

(args

g

(r)

i

) = args

g

(u)

i

). Because for each i the args

g

(u)

i

�

g

args

g

(v)

i

also the resulting graphs are equivalent. 2

For the following we suppose that the set of constructors include such types

as Int, Real and []. Their de�nitions are shown at �gure 2.6 .

33

2.5 Comparing of Types

Two methods of comparing types are discussed in this chapter. One is based

on the more general term introduced in chapter one. The second is speci�c to

hierarchy types described in this chapter. As in the chapter one we de�ne the

more general term.

De�nition 2.5.1 We say that graph g is more general then graph h if there

exists a substitution f such that f(g) � h.

Example 2.5.1 When a actual parameter is applied to a function in the sub-

typing theory, it need not necessarilly match exactly type of a formal parameter.

It can be its subtype. So the well-known example of function last :: [a] -> a

for the following application would not lead to equality but inequality, Int should

be subtype of a.

last [1, 2, 3]

In general, any application leads to inequality. That is the reason for de�ning

the subtype relation between types.

De�nition 2.5.2 Let g 2 G . Let u; v 2 V

g

. The node u is a subtype of

v, that is denoted by u�

g

v if there exists a node n 2 supers

g

(u) such that

symb

g

(n) = symb

g

(v) and for each i the following is applied:

variance(symb

g

(n)) = r) args

g

(n)

i

�

g

args

g

(v)

i

variance(symb

g

(n)) =4) args

g

(v)

i

�

g

args

g

(n)

i

variance(symb

g

(n)) = 3) args

g

(n)

i

�

g

args

g

(v)

i

^ args

g

(v)

i

�

g

args

g

(n)

i

variance(symb

g

(n)) = 2) true

The de�nition is recursive, because the result of comparison for nodes de-

pends on their arguments. But the relation �

g

is de�ned only on acyclic graphs

and that is the reason we can give the following proposition.

Lemma 2.5.1 Let g 2 G . Then the relation �

g

is reexive, transitive and

antisymetric.

Proof. The proof is based on induction on the number of used nodes of

compared nodes.2

Program 2.5 is an implementation of comparison between nodes in an

extended graph.

2.6 Node Inequalities

A set of inequalities on a graph g is a set of node pairs compared either for type

equality or subtype relationship. The solution is any graph h less general then

g, where nodes in pairs satis�es the conditions.

34

// Checks whether arg1 is subtype of arg2

checkSubType :: V

g

V

g

-> Bool;

checkSubType u v

| u == v = True;

| symb

g

(u) == ? = False;

| symb

g

(u) == symb

g

(v) = checkArguments

(checkSubType, flip checkSubType, checkEquiv, \x->True) u v;

| symb

g

(u) == Object = False;

| checkSubType sups

g

(u) v

// Checks whether arg1 and arg2 are equivalent

// in terms of subtypes

checkEquiv :: V

g

V

g

-> Bool;

checkEquiv u v = checkSubType u v && checkSubType v u;

::TestFun :== V

g

V

g

-> Bool;

// Four functions for (variance, covariance, both, none) cases

::FourTestFuns :== (TestFun, TestFun, TestFun, TestFun);

// Takes four functions and two nodes and applies

// these functions to the nodes' arguments.

// The applied function is choosen on the

// knowledge of variance of the constructor.

// The result is true if all functions retuned true.

checkArguments :: FourTestFuns V

g

V

g

-> Bool;

checkArguments (f1, f2, f3, f4) u v

| symb

g

(u) <> symb

g

(v) = False

= all [

case of (variance

i

) {

r -> f1 args

g

(u)

i

args

g

(v)

i

;

4 -> f2 args

g

(u)

i

args

g

(v)

i

;

3 -> f3 args

g

(u)

i

args

g

(v)

i

;

2 -> f4 args

g

(u)

i

args

g

(v)

i

;

} \\ i <- [0..len - 1]

];

where {

variance = variance(symb

g

(u));

len = arity(symb

g

(u));

};

Algorithm 2.5: Algorithm for testing subtype relation between nodes

35

De�nition 2.6.1 Let g be a graph. The set of inequalities is any pair (g;M),

where M � fu � v : u; v are reachableg.

The reason for the restriction to only reachable nodes is the same as in the

�rst chapter. We want equivalent graphs (g � h) to behave similarly. However,

since the equivalency of graphs depends only on reachable nodes, we have to

restrict the inequalities to use only these nodes.

De�nition 2.6.2 Let (g;M) be a set of inequalities. Let f be a valid substitu-

tion on g. Applying substitution f on M can be denoted as f(M) and declared

as f(M) = ff(u) � f(v) : u � v 2Mg.

The new set of inequalities (f(g); f(M)) is valid because all node pairs from

f(M) remain reachable.

De�nition 2.6.3 Let the pair (g;M) be a set of inequalities. Then

(i) graph g is the solution of M if (8 (u � v) 2M) u�

g

v,

(ii) The set of solutions of (g;M) is Sol

g

(M) = fh : (9f) f is a valid

substitution on g ^ h � f(g) ^ h is the solution of f(M)g,

(iii) graph h is the most general solution, if for each solution s 2 Sol

g

(M) it

is true that h� s.

The point (ii) guarantees that if a graph is a solution, then all equivalent

graphs are also solutions. The transitivity of � allow us to prove a lemma

similar to the one in the previous chapter. As a result, we obtain that if there

is a solution, all less general graphs are also solutions.

Lemma 2.6.1 Let h

1

2 Sol

g

(M) and h

1

� h

2

. Then h

2

2 Sol

g

(M).

Proof. As in chapter one. 2

2.7 Solution for Set of Inequalities

This section discusses solutions of the set of inequalities. We give an example

of set of inequalities that does not have most general solution and also present

another set where the solution cannot be obtained only by applying substitu-

tions. Lastly we present algorithm which is capable of deciding whether a given

graph is a solution of the set of inequalities or not.

Example 2.7.1 Figure 2.7 presents the graph created for the following ex-

pression:

// program without most general type

result :: Real;

result = func param;

param = 10;

36

a:

�

�

- �

�

~

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

q

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

-..

:

.

.

.

.

.
.
.
.
.
.
.
.
.

.

.

.
.
.
.
.
.
.
.
.

.

.
.
.
.
.
.
.
.
.

.

.

.
.
.
.
.
.
.
.
.

.

.

.
.
.
.
.
.
.
.
.

.

.
.
.
.
.
.
.
.
.

.

.

.
.
.
.
.
.
.
.
.

.

.

.
.
.
.
.
.
.
.
.

.

.
.
.
.
.
.
.
.
.

.

.

.
.
.
.
.
.
.
.
.

.

.

.
.
.
.
.
.
.
.

-

param: Int Real

result: Real

Object

func:

Figure 2.7: Graph for set of inequalities

?

*

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

}

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

	

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

~

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

?

Object

v:[]

String

u:[]

Real

a:

Figure 2.8: Missing common super type

The set of inequalities constructed for this piece of code includes param � a

(because the integer parameter is applied to function with type a -> a) and

a � result (the result of func param is assigned to result). There are two

solutions for this set of inequalities. In both cases the type variable a must be

something between Int and Real. Because there is no other type between these

two, the a can be either Int or Real. But neither one of these results is more

general than the other. So we have presented a simple set of inequalities that

has a solution but does not have the most general one.

Example 2.7.2 The model described in chapter one used only substitution to

modify the graph while looking for a solution of a set of equalities. Conversely,

if we use the same graph model for solving inequalities we could get into prob-

lems. Sometimes one needs to �nd a substitution for a variable bound by more

subtypes and this can lead to searching for the greatest common super type

that need not be present in the graph. An example is shown in �gure 2.8 . Let

u�

g

a and v�

g

a. Then the substitution for a should be [Object]. But there is

no node representing such a type in the graph. We have received type without

node representation. This was impossible in the previous chapter and does not

allow us to use the graphs as we used it before, as a base for computation with

�xed set of nodes, where only edges are modi�ed by substitutions.

37

// program that test whether the graph is a solution for

// the given set of inequalities

Test :: (Graph, Set of inequalities) -> Bool;

Test (_, ;) = True;

Test (g, fu � v

S

Mg) = checkSubType u v && Test M;

Algorithm 2.6: Checking if graph is a solution of set of inequalities

So the requirements for solving sets of inequalities go beyond the model we

have introduced in chapter one and that is why we present only an algorithm

that is able to test whether a graph is a solution for set of inequalities. The

program 2.6 checks whether all inequalities are satis�ed.

We would like to check whether there is a solution for a given graph and

set of inequalities. As in chapter one we de�ned a solution to be a substitution

which produces a graph that satis�es all inequalities. But as we see in example

2.8 , sometimes the solution cannot be produced only by substitution. That is

why looking for a set of solutions or only testing if there is a solution cannot be

completed in the graph model we study. It requires additional operations.

2.8 Conclusion

Chapter two presents an extension to typing graphs that can express superclass

relations between types with arguments. An extension to already existing Clean

language is proposed which enriches the record types to objects.

We extend type graphs from the previous chapter to be able to work with

objects. We modify all graph terms to reect the change. Then we de�ne what

a valid constructor set is and how types are created from that set. We study

real world requirements and we provide a way for comparing types for supertype

relationship.

We introduce a set of inequalities and present an algorithm for testing

whether a graph satis�es a set. Alas. We show examples where our model

fails and is not suitable for the task. This is why we do not present an algo-

rithm for �nding most general solution (need not exist) nor an algorithm for

testing if there is a solution for a set of inequalities (because there can be a

solution not expressible in the terms of the graph model we are working with).

The only algorithm we introduce is the one for checking if the set of inequalities

is satis�ed for a given graph.

38

Conclusion

Type graphs

In the previous chapters we have concentrated on presenting the typing theory

in terms of graphs. We have de�ned a special kind of graph based on the graph

presented in [3]. This graph contains nodes with assigned symbols, directed

edges between them and a set of important nodes, roots. We introduced a

special constructor that represented an empty node, variable.

We studied the original Hindley/Milner theory in the terms of our type

graphs. We de�ned ways for comparing nodes in the graph and have shown

that any set of equalities that has a solution can be solved by the algorithm

presented . The algorithm not only �nds a solution but �nds the most general

one. As a result we have shown that the Hindley/Milner theory can be presented

by our type graphs.

The second task we concentrated on was to extend the theory to express

subclassing of types. We de�ned our requirements based on the study of real

object oriented languages extended by type variable polymorphism. We have

shown how constructor and type sets should be constructed. After introducing

the set of extended graphs we de�ned ways of comparing graph nodes and

provided an algorithm that is capable of doing it.

We de�ned the set of inequalities, the solution and the most general solution

of the set. In opposite to the chapter one we saw that even a set has solution it

need not have the most general one. To ful�ll the misery we gave an example

showing that the graph model we used was not powerful enough to express the

computation.

Di�erences between theories

The success of the graph types in the case of Hindley/Milner theory and the

failure in the extented case point out the di�erences. The theory presented in

chapter one is based on substitutions. During the computation of the solution

the graph is modi�ed by substitutions but only to create a less general graph.

The assigned type is never modi�ed, only made more concrete.

The computation on the extended graphs is di�erent. An inequality of vari-

able cannot be solved only by substitution but rather by a range of subtypes.

39

The type variable has assigned a range of subtypes it can be substituted and

each inequality can restrict the range to smaller one. Moreover the range is not

only bounded by already existing types in the graph but can also be bound by

new types not represented by nodes of the graph.

Future research

The future research in the type graph area should focus on the range and new

type problem. The solution to the range problem may lay in changing of vari-

ables to bound ones with the upper and lowest type that can be assigned to

them. The problem of creation of new types could be solved by introduction of

new operations (substitution is not enough) that would modify the type graph.

But solutions to both problems remain open.

40

Bibliography

[1] Barendregt, H. P. The Lambda Calculus: its Syntax and Semantics,

North-Holland, Amsterdam, 1984.

[2] Rinus Plasmeijer, Marko van Eekelen The Concurrent Clean Lan-

guage Report, http://www.cs.kun.nl/ clean/Clean.Cleanbook.html

[3] Barendregt, H. P., M. C. J. D. van Eekelen, J. R. W. Glauert, J. R.

Kennaway, M. J. Plasmeijer, M. R. Sleep, Term Graph Rewriting,

http://www.cs.kun.nl/ clean/FP.Publications.html

41

