
DSL vs. Library API Shootout

Rich Unger
Salesforce.com

Jaroslav Tulach
Oracle

Agenda

What do we mean by DSL?
What do we mean by library?
When is it good to use a DSL?
When is it a bad idea?
Evolution
Versioning
Tooling
Q/A

What is a DSL?

A programming language or specification language dedicated
to

a particular problem domain,
a particular problem representation technique, and/or
a particular solution technique.

 --wikipedia (http://en.wikipedia.org/wiki/Domain_Specific_Language)

http://en.wikipedia.org/wiki/Domain_Specific_Language

DSL Classification

Processing style
Own parser (External)
XML based
Embedded in other programming language (Internal)

Computational power
Declarative programming
Turing complete

Not quite here: Tooling
Need to extend IDEs to support the DSL
Tooling standardized for all IDEs

DSL Examples

LOGO (or Karel)
SQL
ZIL (Zork Implementation Language)
Postscript
TeX
CSS
BNF Grammars (YACC, Antlr, etc)
Apex
XML variants (Ant, VoiceXML, XSLT, Docbook, SVG)
Embedded/Internal (in Haskell, Scala, Java6)

It's Okay to Use XML?
Quick to develop
Free lexing
Lots of existing libraries to manipulate it
Standard syntax for AST representation
Poor performance
Completely unreadable to humans
<one-of>
 <item>Michael</item>
 <item>Yuriko</item>
 <item>Mary</item>
 <item>Duke</item>
 <item>
 <ruleref uri="#otherNames"/>
 </item>
</one-of>

<one-of>
 <item weight="10">small</item>
 <item weight="2">medium</item>
 <item>large</item>
</one-of>

Michael | Yuriko | Mary
 | Duke | $otherNames

/10/ small | /2/ medium | large

Libraries and Embedded DSLs
Lexing automated
Free interpretation
Targeting wide audience of developers
Bound to syntax of the language

Not a real problem for functional languages
People like Java

Creates de-facto new language
Reading on paper?

expr ::= expr ’+’ term | term
term ::= term ’*’ factor | factor
factor ::= ’(’ expr ’)’ | digit+
digit ::= ’0’ | ’1’ | ... | ’9’

object arithmeticParser extends StdTokenParsers {
 type Tokens = StdLexical ; val lexical = new StdLexical
 lexical.delimiters ++= List("(", ")", "+", "*")

 lazy val expr = term*("+" ^^^ {(x: int, y: int) => x + y})
 lazy val term = factor*("*" ^^^ {(x: int, y: int) => x * y})
 lazy val factor: Parser[int] = "(" ~> expr <~ ")" | numericLit ^^ (_.toInt)
}

When is it good to use a DSL?

1. Targeting Domain Experts,
Not Java Experts

ZIL: lets novel authors program whole games
TeX: used in academia across many disciplines

Would a Java API for outputting typography even make sense?
Excel formulas: non-programmers do amazing things with
excel

This is a sliding scale...

2. The Domain Lends Itself to an Idiom
Expressed in a Simple Syntax

TO REDSQUARE
; draw the outline
REPEAT 4 [FORWARD 100 RIGHT 90]

; move into the square
PENUP
RIGHT 45
FORWARD 4

; fill the square with red
SETFLOODCOLOR 4
FILL

; move back
BACK 4
LEFT 45
PENDOWN
END

http://et.bgcbellevue.org/logo/

Example: Apex Triggers
Actual Trigger

trigger CashOnlyPlease on Account (before insert, before update) {
 for (Account a : Trigger.new) {
 if (a.name == 'Deadbeat Inc.')
 a.credit_terms = 'COD';
 }
}

Proposed Java Library Syntax

@DbTrigger("BEFORE_INSERT, BEFORE_UPDATE")
public class CashOnlyPlease implements Trigger<Account> {
 public void execute(List<Account> triggerOld, List<Account> triggerNew) {
 for (Account a : triggerNew) {
 if ("Deadbeat Inc.".equals(a.getName())
 a.setCreditTerms("COD");
 }
 }
}

Example: Apex Triggers
Actual Trigger

trigger CashOnlyPlease on Account (before insert, before update) {
 for (Account a : Trigger.new) {
 if (a.name == 'Deadbeat Inc.')
 a.credit_terms = 'COD';
 }
}

Proposed Java Library Syntax

 @DbTrigger({Before.INSERT, Before.UPDATE})
 public static void execute(TriggerContext<Account> ctx) {
 for (Account a : ctx.getNew()) {
 if ("Deadbeat Inc.".equals(a.getName())
 a.setCreditTerms("COD");
 }
 }

3. You Can Eliminate Boilerplate or Do
Validation Based on Domain Assumptions

If it doesn't make sense for the domain, it shouldn't compile.

Static type checking for domain objects

Account[] accs =
[SELECT firstname, lastname FROM Contact] // compile error

Bring in a set of assumptions from the domain

public class Foo with sharing { ... }

Example: Apex SOAP Endpoints

Apex Syntax
webservice String getSomething(integer someParam) { ... }

Proposed Java Syntax
@webservice public String getSomething(integer someParam) { ... }

But the intent of webservice is to define a scope (the web).
You wouldn't say:
@public private String ...

Why not use DSL?

Industry is conservative
Developers love Java
Libraries naturally extend the language
Good library increases adoption
People don't know better options than DSL

Annotation Processors
Natural like syntax

Can Java be DSL meta language?

Demo
"Java on Rails"
Compile time live access to Data Base

Evolution

Requirements change over time. How do you
evolve a DSL to sunset old features and
compatibly introduce new ones?

Goodbye @Deprecated

New versions can completely change syntax/semantics
Complete Control over Parser
Allows you to keep the intent clear in the syntax

Mechanism: versioning

Example: VoiceXML

Version is in the file itself

<vxml version="2.0">

Can use transforms, intermediate representations, or just
multiple parsers

Example: Apex

Classes/Triggers stored in the DB
Column for version
User editable

One parser internally
Checks version when behavior differs

Example: Apex

Floating point literals:

In version 16.0, this literal is a double

12.4

If you change the class to 17.0, it's a BigDecimal.
To get a double, you need

12.4d

Example: Apex

Implementation:

Object value;
if (currentVersion > 16.0)
 value = new BigDecimal(floatingPointToken);
else
 value = Double.valueOf(floatingPointToken);

Evolution of Libraries
Requirements change over time. How do you
evolve a library to sunset old features and
compatibly introduce new ones?

Versioning of Libraries

Library identification
code name
version

Dependencies on other libraries
no classpath
specify code name and version

Runtime Container
NetBeans, OSGi

Backward Compatibility Rules
Bytecode is a "DSL" for compatibility

Deprecations in Libraries

@Deprecated
@Transformation

http://lang.dev.java.net
Support in all good IDEs

@PatchByteCode
non public for compilation
public for execution

Moving to separate library
dependency transformations

Versioning of Annotation Processors

Compile time
Complete control on generated code
Annotations support default values
Adding new annotations

/version 1.0
@ActionRegistration
class MyAction {
}

// version 1.1
@ActionRegistration(asynchronous=true)
class MyAction {
}

// alternative 1.1
@ActionRegistration
@ActionAsynchronous
class MyAction {
}

Tooling for Free

IDEs support Java
code completion
javadoc
navigation
overrides, usages, refactoring

Good IDEs support Java6 - e.g. annotation processors
to generate classes
to provide code completion
compilers yield errors
no changes to build process (javac is enough)

Write once, edit, compile, publish anywhere!

DSL Tooling

Most IDEs provide easy tooling for creating support in that
IDE for DSLs
Language Workbenches (JetBrains MPS)
Simple syntax? Restricted domain? Perhaps you don't need
an IDE!

References

apidesign.org antlr.org

developer.force.com

