

JavaOne 2010

Patterns for Modularity

Patterns for Modularity
Anton Epple, Eppleton IT Consulting

Jaroslav Tulach, NetBeans Team, Oracle,
Prague

Zoran Sevarac, Faculty of Organizational
Sciences, University of Belgrade

JavaOne 2010

Design Patterns

„a general reusable solution to a commonly
occurring problem in software design“

JavaOne 2010

Design Patterns

When creating modular Applications there are
commonly occurring problems

But where are the Design Patterns to solve them?

JavaOne 2010

Design Patterns

OSGi, Spring, NetBeans & others suggest
different solutions for some of these problems

Let's discuss them!

JavaOne 2010

Design Patterns

Criteria for Modularity patterns:

Maximize reuse

Minimize coupling

Deal with change

Ease Maintenance

Ease Extensibility

Save resources

Logical design versus physical design

JavaOne 2010

Design Patterns

Problem Domain 1: Relationships

Managing Dependencies

JavaOne 2010

Managing Dependencies

The Basics: Managing Dependencies

Direct dependencies

Indirect dependencies

Cycles

Incoming versus Outgoing dependencies

Classical Design Patterns and Modules

JavaOne 2010

Types of Dependencies

M1

M2

M1

M2

M3

Direct Dependency Indirect Dependency

 9

JavaOne 2010

Acyclic Dependencies

M1

M2

M3

No cycles

Module relationships should be uni-directional

JavaOne 2010

Types of Dependencies

M1

M2

M1

M2

M3

Outgoing Dependency Incoming Dependency

M3

JavaOne 2010

Dynamic changes

M1

M2.1

M1

M2.1

M3

Easy to Change Hard to change

M3

JavaOne 2010

Applying practice from software design patterns

● Adapter – adapt interface between two modules

● Mediator – holds interaction between two or more modules = bridge

● Facade – provides front interface for the set of modules

Applying practice from software design patterns

JavaOne 2010

Design Patterns

Problem Domain 2: Communication

Service Providers and Consumers

 14

JavaOne 2010

 Dependency Reduction

UppercaseTextFilterEditor

TextFilter

Reducing Dependencies:

Service Provider Interface, Provider & Registry

JavaOne 2010

Services

Features of Service Infrastructures

Registering Services

Retrieving Services

Disabling Services

Replacing Services

Ordering Services

Declarativeness: Metainformation for Services

Declarativeness:Codeless Services

Availability of required Services

JavaOne 2010

Services

Solutions

JDK

OSGi Service Registry

Declarative Services

Lookups

General Dependency Injection

(Spring Dynamic Modules, iPojo, Peaberry, Blueprint Services)

JavaOne 2010

Services

JDK Solution: ServiceLoader

Declarative Registration in META-INF/services
ServiceLoader<TextFilter> serviceLoader =
ServiceLoader.load(TextFilter.class);

for (TextFilter filter : serviceLoader) {

 String s = filter.process("test");

}

JavaOne 2010

ServiceLoader

Problems:

ServiceLoader isn't dynamic:

What if user installs plugin with new service?

What if user uninstalls plugin with service?

ServiceLoader loads all services at startup:

What about startup time?

What about memory usage?

No Configuration

Standard Constructor

No support for Factory Methods or Factory

No ranking

JavaOne 2010

Services

NetBeans Solution: Lookups and XML-files

Declarative Registration & Configuration
Dynamic (LookupListener)

Ordering (position attribute)

Lazy Loading

Factories and Factory Methods

Configuration via Declaration

Compatible with ServiceLoader (META-INF/services)

Codeless Extensions

JavaOne 2010

Services

OSGi Solution: ServiceRegistry

Registered with code:
Long i = new Long(20);

Hashtable props = new Hashtable();

props.put("description", "This an long value");

bundleContext.registerService(Long.class.getName(),
i, props);

JavaOne 2010

ServiceRegistry

Benefits:

Dynamic (ServiceTracker)

Factories supported

Filters

Configuration via code

Problems:

Registration introduces dependency to framework

Eager creation: increase complexity, memory footprint

Not Typesafe, casting required

JavaOne 2010

Services

OSGi Evolution: Declarative Services

Declarative Registration
<component name="samplerunnable">

<implementation class="org.example.ds.SampleRunnable"/>

<service>

<provide interface="java.lang.Runnable"/>

</service>

</component>

JavaOne 2010

Services

OSGi Evolution: Declarative Services

Declarative Registration
<component name="samplerunnable">

<implementation class="org.example.ds.SampleRunnable"/>

<service>

<provide interface="java.lang.Runnable"/>

</service>

</component>

No support for codeless extensions

JavaOne 2010

Services

Dependency Injection (Spring):
public class Editor {

private TextFilter filter;

@Autowired

public void setTextFilter(Filter filter) {

 this.filter = filter;

}

…

beans.xml file to register Implementation, Injection by framework.

25

JavaOne 2010

Finding Implementations of Interfaces

 Dependency Injection (Spring):

Static environment

Importance of imports

ServiceLoader/Lookup

Dynamic

Queries hidden in code

Are singletons bad?

Application context only

Injectable singletons

26

JavaOne 2010

Declarativeness and Speed

 Modular applications are large

Start time is important on desktop

Running 3rd party code is dangerous

Optimize infrastructure

Declarative registrations

Pull but dont push

Importance of imports

JavaOne 2010

Design Patterns

Case Study: Neuroph, java neural network

Porting to NetBeans Module System

JavaOne 2010

Java Neural Network Framework Neuroph

1. What is Neuroph?
Java Framework for creating neural networks, that can be easily used in Java apps.

2. Key features
- GUI for creating NN
- Java NN library
- Easy to use
- Easy to extend and customize
- Basic tools for: image recognition, OCR, stock prediction

3. Usage:education, research and real world problems (problems like classification,
recognition, prediction)

4. Collaboration with Encog and other open source projects

JavaOne 2010

Why Porting to NB platform?

1. At first we wanted nice, professional looking GUI, an IDE for neural
networks

2. Later we realized that there is much more to gain from porting:

- Reuse lots of stuff available on NB Platform- like Gephi (for visualization)
- Integration with other apps on NB Platform - like Maltego (NB as the
integration platform)s
- Many other usefull features like update, improved design easier to extend
and maintain

3. Improved overall quality, competitive advantage and ensured future
development

JavaOne 2010

To Do:
Move existing code to NB Platform/modules

Goal:
Get usable, working app as soon as possible

Main question:
Which modules do we need, how to identify/define modules?

Our approach:

Create few modules to cover basic/core features
Copy/paste/adapt existing code into modules
Create new modules when needed
Do it in an iterative process.

Toni's 5 principles:

Maximize reuse, minimize coupling, deal with change, ease maintainance, ease
extensibility

Refactoring to Modules

JavaOne 2010

Module diagram

IDE Neuroph Lib
Wrapper

IDE Image
Recognition

Text
Recognition

Handwritten
 Letters Recognition

Neuroph Lib
Wrapper

1. Iteration

2. Iteration

JavaOne 2010

before porting to NetBeans Platform

JavaOne 2010

after porting

JavaOne 2010

Patterns for Modularity

Dependency Management

Service Infrastructures

Many more topics: general API design,
compatibility issues...

JavaOne 2010

Patterns for Modularity

Q&A

 36

JavaOne 2010

 ServiceLoader

UppercaseTextFilterEditor

TextFilter

ServiceLoader<Device> serviceLoader =
ServiceLoader.load(TextFilter.class);
for (TextFilter filter : serviceLoader) {

String s = filter.process("test");
}

de.eppleton.UpperCaseFilter

File META-

INF/services/de.eppleton.TextFilter

JDK 1.6 ServiceLoader:

37

JavaOne 2010

Service Infrastructure

NetBeans, OSGi & Eclipse Services:

NetBeans Declarative
Services

Extension
Points

1:n Service <-> Extension Point + + -

codeless Extensions + - +

Documentation -/+
ApiDoc

+ +

JavaOne 2010

Design Patterns

Designing for backward Compatibility

Abstract class versus Interface

Composition versus Inheritance

JavaOne 2010

Composition versus Inheritance

Composition versus Inheritance

BirdInterface:

void fly();

void quack();

void swim();

void talk();

void run();

JavaOne 2010

Composition versus Inheritance

Composition versus Inheritance

Empty implementations

Not easy to enhance:

void crow(); // breaks compatibility

JavaOne 2010

Composition versus Inheritance

Composition versus Inheritance

Solution split Interface

Not dynamic:

JavaOne 2010

Composition versus Inheritance

Composition versus Inheritance

Object „has a“ Capability (e.g. SaveCapability: Editor can be
saved)

Add/remove SaveCapability to Lookup:

public interface SaveCapability{

 public void save();

}

Add SaveCapability on Editor change

Save Button listens for Capability

Remove capability after save is performed

JavaOne 2010

Design Patterns

Dealing with incompatible changes

Avoid them as shown before

Source, Binary and Functional Compatibility

Versioning

Parallel use of different Versions of a Module

JavaOne 2010

Design Patterns

Control: What is part of your API?

A lot of stuff you didn't think about, behaviour,
accessible classes, Basically everything

Latest Example: Eclipse & JDK Vendor name

Package-Private

PublishedInterface

Information Hiding

Friends & Buddies

	Snímek 1
	Snímek 2
	Snímek 3
	Snímek 4
	Snímek 5
	Snímek 6
	Snímek 7
	Snímek 8
	Snímek 9
	Snímek 10
	Snímek 11
	Snímek 12
	Snímek 13
	Snímek 14
	Snímek 15
	Snímek 16
	Snímek 17
	Snímek 18
	Snímek 19
	Snímek 20
	Snímek 21
	Snímek 22
	Snímek 23
	Snímek 24
	Snímek 25
	Snímek 26
	Snímek 27
	Snímek 28
	Snímek 29
	Snímek 30
	Snímek 31
	Snímek 32
	Snímek 33
	Snímek 34
	Snímek 35
	Snímek 36
	Snímek 37
	Snímek 38
	Snímek 39
	Snímek 40
	Snímek 41
	Snímek 42
	Snímek 43
	Snímek 44

