

Designing API:
20 API Paradoxes

Jaroslav Tulach
NetBeans Platform Architect

Motto

Just like there is a difference between describing
a house and describing a Universe, there is a
difference between writing a code and producing
an API.

About Me

• 1996 – Xelfi @ MatFyz
• 1997 – Initial NetBeans APIs
• 1999 – Acquired by Sun Microsystems

> 2008 - Practical API Design book
• 2010 – Acquired by Oracle

> NetBeans & JDeveloper
> 2012 – 20 API Paradoxes book

• now – Java & Browser

The First Book

http://apidesign.org

“European” version

Paradox

• Crossing the knowledge horizon
> Fear of unknown
> I know it “all” mode

• Expectation vs. Reality
> The less “fear” the more paradoxes

• Software knowledge
> School
> In-house development
> Framework

Is paradox unnatural?

More Organized Book

http://apidesign.org

“U.S.” version

20 Paradoxes to Talk About

Users

Use-cases
Sustaining

Coolness vs. Cost

API Authors

Injectable
Singletons

Backward
Compatibility

Incremental Deployment

Freedom

Callers vs. Providers

Maintenance

Evolution or
Intelligent Design?

User Contributions

Accepting the
Unacceptable

Know It Better!

Bugs & Alternatives

Modularity

Re-Use vs. Use

Less is More

DSL

Seek for More

http://www.apidesign.org/

Q&A

Who Are Your Users?

Rationalists?

Empiricists!?

Clueless!

Selective Cluelessness
One cannot understand everything

• Understanding is limited
> takes time
> brain is finite

• Not necessary to understand everything
> Linux, Apache, MySQL on the stack
> Learn just the API facade

• Minimize Understanding!
• Make it increasable!

http://wiki.apidesign.org/wiki/Cluelessness

What is API?
Just like writing a book

• One writer
> Design in committee?

• Many readers
> Unknown to the writer
> Envisioned via use-cases

• Best-seller
> Speak clearly
> Built up on reader's knowledge
> Keep consistency

http://wiki.apidesign.org/wiki/APITypes

Maintaining an API
Develop and sustain!

• Write once and publish
> Creativity is good
> Strive for elegance

• Switch to sustaining mode
> Preserve made (unknown) investments
> Polish
> Promote

• Incremental API Design
> Get ready for evolution

http://wiki.apidesign.org/wiki/Evolution

Quality of an API?
3 sides to every API

• Writer's point of view
> Sacrifice
> Elegance is the least priority

• Users' point of view
> API usage shall lead to “nice” code
> Upgrade breaks no existing code

• Essential API “goodness”
> Correctness (via usecases)
> Stability (via tests)
> Isolate writer and reader

http://wiki.apidesign.org/wiki/3SidesToEveryAPI

Good Technology
Holy Grail every vendor seeks

• Coolness
> Attracts attention
> Otherwise useless

• Time to Market
> Achieve more by doing/knowing less
> Cluelessness

• Cost of Ownership
> Evolution
> Compatibility

http://wiki.apidesign.org/wiki/Good_Technology

Time Matters
Compatibility with previous releases

• Source compatibility
> JavaScript, PHP – no binaries
> Knowing the language is enough

• Binary compatibility
> JAR, object files, assemblies
> Understand the ABI rules

• Functional compatibility
> Tests, tests, tests

• The invisible job
http://wiki.apidesign.org/wiki/BackwardCompatibility

Source compatibility
What compiled needs to compile

• Source compatibility gotchas
> Making protected method public
> Adding overloaded methods
> Wildcard imports collisions

• Beware of “patch” compatibility
> Close proximity of MediaWiki

http://wiki.apidesign.org/wiki/BackwardCompatibility

Binary compatibility
What linked together needs to link

• Most important type for Java, C, etc.
> Compile with oldest vs. run with newest

• Some paradoxes
> Making protected method public is OK
> Adding overloaded methods is OK
> Wildcard imports collisions cannot happen

• Some gotchas
> Changing type of field or method
> Adding virtual method in C++

• Signature testing tools
http://wiki.apidesign.org/wiki/BackwardCompatibility

Functional compatibility
The ultimate goal is that the system shall work!

• Automated tests
> Test coverage
> Sample API usage

• Multi-threading
> Never call foreign code with a lock
> Beware of re-entrant calls
> Emulate deadlocks in tests

• Memory management
> Injection of references
> Test for proper clean up with assertGC

http://openide.netbeans.org/tutorial/test-patterns.html

Factorial

Demo

Client vs. Provider
Evolution is different

• API for clients to call
> “Open space”
> Can grow with time

• API to implement
> Cannot change
> A “fixed point”

• Don't mix
• Compose

> PropertyChangeListener and Event
http://wiki.apidesign.org/wiki/ClientAPI

Code Against Interfaces
The Java misinterpretation

• Review API before publishing
• Recognize API from implementation
• Old advice

> Interface means abstract definition
> Not Java interface keyword

• Evolution aspects
> Interfaces better for “fixed points”
> (final) classes better for “open spaces”

http://wiki.apidesign.org/wiki/Chapter_6

Maintenance cost
How hard is to maintain an API?

• API happens
> Distributed teams need it

• No users => no bugs => no work
• Feature requests

> Let your users implement them
• Bugs

> Request automated test by reporters
• Maintaining an API is simpler than maintaining code

with no API
http://wiki.apidesign.org/wiki/CodeInjection

API Review
Rejecting “ugly” API changes?

• Allow anyone propose API change
> Public rules

• Checklist
> Use-case driven
> Enough test coverage
> Properly documented
> Backward compatible

• Give up on beauty
> API design is not art!

http://wiki.apidesign.org/wiki/CodeInjection

Alternative Behavior
Balance bug fixes and compatibility

• Compile-time
> New constructor, factory, setter

• Deploy-time
> Per VM configuration

• Side by side
> Copy the old class into new
> Prevents mutual exchange

• Runtime-time
> Inspect caller's expected environment

http://wiki.apidesign.org/wiki/AlternativeBehaviour

Modularity
Exactly specify code's environment

• Code does not live in vacuum
> Needs appropriate environment

• Libraries evolve in time
> Identify them with version number

• One can always mimic old environment
> Alternative Behaviors
> Emulation layers
> Bridges

http://wiki.apidesign.org/wiki/Modularity

APIs Are Like Stars
Sent your old API to black hole!

• Can one get rid of old API?
> While keeping backward compatibility?

• Yes, due to modularity
> Release new library version
> Mimic old behavior until clients migrate
> All migrated => old behavior is gone

• Place for beauty
> Old, ugly API can compatibly disappear

http://wiki.apidesign.org/wiki/Star

Research Field
Place for Rationalistic Souls

• NP-Complete problems
> 3SAT to Modular configurations

• Verification
> Signature checks
> Is an upgrade safe?

• Language Design
> Modifiers are misleading
> Distributed Modularity

http://wiki.apidesign.org/wiki/LibraryReExportIsNPComplete

Seek for More

http://www.apidesign.org/

Q&A

	Snímek 1
	goal
	Snímek 3
	book
	paradox
	Snímek 6
	Snímek 7
	Snímek 8
	cluelessness
	users
	what
	sustaining
	3sides
	good
	compatibility
	source
	binary
	functional
	show-functional
	apivsspi
	interfaces
	cheap
	review
	alternatives
	modularity
	stars
	research
	qa

