
Minimizing Understanding in the
Construction and Maintenance of

Software Systems

Martin Rinard
Department of Electrical Engineering and Computer Science

Computer Science and Artificial Intelligence Laboratory
Massachusetts Institute of Technology

Cambridge, MA 02139

Rationalism

Empiricism

Cluelessness

Rationalism

Empiricism

CluelessnessSelective Cluelessness

Basic Message

Your Cognitive
Capability

System You
Understand

System You
½ Understand

System You
¼ Understand

To Maximize Functionality
Minimize Understanding
Subject to Buildability

Rest of the Talk

• Three phases in computer science
• Climbing away from the machine
• Search for truth, elegance, and understanding
• Age of gigantic building blocks and

functionality overkill
• Summary of where we are now
• Where we go from here

(ways to understand even less)

A Discovery Of The Problem

“As soon as we started
programming, we found to our
surprise that it wasn't as easy to
get programs right as we had
thought. Debugging had to be
discovered. I can remember the
exact instant when I realized
that a large part of my life from
then on was going to be spent
in finding mistakes in my own
programs.”

Maurice Wilkes, 1949

Response To The Problem

• Subroutines
• Libraries

Consequences
• Specialization
• Reuse
• Potential

• Loss of Efficiency
• Deskilling

David Wheeler

FORTRAN

Basic premise
• You have formulas you wish to evaluate
• Using the computer is your problem

Formulas

FORTRAN
Compiler

Executable
Code John Backus

Expectation

FORTRAN will solve your problem

“Since FORTRAN will virtually eliminate coding
and debugging …”

(Specifications for the IBM FORmula TRANslating System FORTRAN,
November 10, 1954)

• Solve problems for
• Less than 1/2 the cost
• Less than 1/4 the elapsed time

• Double machine time spent on useful problem
solving

FORTRAN and Understanding

“…the amount of knowledge necessary to utilize
the 704 effectively by means of FORTRAN is
far less than the knowledge required to make
effective use of the 704 by direct coding.”

(Specifications for the IBM FORmula TRANslating System FORTRAN,
November 10, 1954)

COBOL

Grace Hopper

Goals

Portability (Common Business-Oriented Language)

“The need is for a programming language that
is easier to use even if somewhat less
powerful.”

“We need to broaden the base of those who
can state problems to the computer.”

(The Early History of COBOL, The First ACM SIGPLAN Conference on the
History of Programming Languages)

Expectations

“In summary, a well-conducted four-week
COBOL programming course should enable the
graduate to contribute immediately to the
company’s programming efforts.”
(Guides to Teaching COBOL, Communications of the ACM, May 1962)

“It was certainly intended (and expected) that the
language could be used by novice programmers
and read by management.”
(The Early History of COBOL, The First ACM SIGPLAN Conference on the
History of Programming Languages)

LISP
Initially set up as language to support Advice Taker
natural language processing and reasoning system

“… it became clear that this
combination of ideas made an
elegant mathematical system as
well as a practical programming
language. Then mathematical
neatness became a goal …”
(History of LISP, The First ACM
SIGPLAN Conference on the History
of Programming Languages)

John McCarthy

Search for Truth, Elegance, and
Understanding

People realized programming was
• Important
• Difficult
• Unforgiving

(single error could have drastic consequences)
• Intellectually engaging

Responses

“Some programs are elegant, some are
exquisite, some are sparkling. My claim is
that it is possible to write grand programs,
noble programs, truly magnificent ones!”
(Don Knuth, ACM Turing Award Lecture)

Don Knuth

Simula

“To program is to understand”
(Kristen Nygaard,

moral philosopher)

• Original goal:
• Computer as means for understanding real world
• Concepts inside computer match concepts in real world

• Eventually applied approach to all kinds of programming
• Big advantage is that it reduces thinking

• Conceptual framework ready to go
• Builds on concepts from physical world

Ole-Johan Dahl Kristen Nygaard

Smalltalk
• Make a new world inside computer
• Live inside that world

• World should be elegant
• Build on physical world you know

• Primary goal: power

Adele Goldberg Dan Ingalls Alan Kay

Reasoning from Premises
• Programs are unforgiving, therefore they

must be correct
• To make program correct, must completely

understand problem and the program
• Programming is difficult, therefore simplicity

and elegance are keys to success

Edsger Dijkstra Tony Hoare Niklaus Wirth Ole-Johan Dahl

Unfortunately, Simplicity and Elegance
Are Hard to Come By…

“Simplicity and elegance are unpopular because
they require hard work and discipline to
achieve and education to be appreciated.”
(Edsger Dijkstra, EWD 1234, “The Next 50 Years”)

“Simple, elegant solutions are more effective,
but they are harder to find than complex
ones, and they require more time, which we
too often believe to be unaffordable.”
(Niklaus Wirth, ACM Turing Award Lecture)

A Discipline of Programming

Programmer Reaction

Programmer Reaction

Programmer Reaction

Programmer Reaction

Dijkstra’s Unpleasant Truths
“When, in the late sixties, it became abundantly clear

that we did not know how to program well enough,
people concerned with Programming Methodology
tried to figure out what a competent programmer's
education should encompass. As a result of that effort
programming emerged as a tough engineering
discipline with a strong mathematical flavour.”

Implications
• “good programming is probably beyond the

intellectual capabilities of today’s ‘average
programmer’”

• “to do, hic et nunc, the job well with today’s
army of practitioners, many of whom have
been lured into a profession beyond their
intellectual abilities, is an insoluble problem”

(Edsger Dijkstra, EWD 611 “The Atlantic Ocean Has Two Sides”)

Fewer Bugs!
More Functionality!

Version 1

Software
Engineers

Version 2

Software
Engineers

Fewer Bugs!
More Functionality!

No Mas!

Version 1

Software
Engineers

Version 2

Software
Engineers

New Product!

Gigantic Building Blocks and Functionality
Overkill

Gigantic Building Blocks and Functionality
Overkill

What Have We Learned?
• Insatiable demand for functionality
• Minimizing understanding is the way to maximize

functionality

• Programming can be
• Intellectually challenging
• Practically difficult

• Programs can be beautiful, elegant, and simple

• Simplicity is a nonstarter
• Elegance is largely irrelevant in practice
• Can achieve previously inconceivable levels of cluelessness

(and therefore functionality) in successful deployed systems

How Are We Doing?

Great!

“There's an old story about the
person who wished his computer
were as easy to use as his
telephone. That wish has come true,
since I no longer know how to use
my telephone.”

(Bjarne Stroustrup, inventor of C++)

How Can We Improve?

• Program Verification
• Data structures, algorithms
• Operating systems, compilers, virtual machines
• Small real-time systems

• System Engineering
• Living With Errors

New Assumption Basis
• Software should be acceptable, not correct

• Acceptability depends on context
• Software usually part of a larger system
• Larger system can often tolerate errors

• Cost and difficulty of developing software is
roughly proportional to amount of correctness

• Obvious conclusion
• If you can make more errors acceptable
• Can leave more errors in system
• And reduce cost and difficulty of producing

acceptable software

New Assumption Basis
• Software should be acceptable, not correct

• Acceptability depends on context
• Software usually part of a larger system
• Larger system can often tolerate errors

• Cost and difficulty of developing software is
roughly proportional to amount of correctness

• Obvious conclusion
• If you want to reduce cost and difficulty of

producing acceptable software
• Make more errors acceptable
• Leave more errors in system

Addressing Errors

Linear
Address
Space

Allocated Data Blocks

*(p+30) += x

Out of Bounds Accesses

Bounds Violation!
• Data corruption…
• Segmentation violation…
• Security Vulnerability

Bounds Checked C Programming Model

Linear
Address
Space

Base Data Block ≠ Accessed Data Block ⇒ Illegal Access!

*(p+30) += x

• Track base data block for each pointer
• Dynamically check that each access falls

within the bounds of the base data block
• If not, access is illegal

Jones&Kelly IWAD 1997, Ruwase&Lam NDSSS 2004

Traditional Bounds Check Philosophy

• Bounds violation (illegal access) is irrefutable
evidence of an error in the program

• Unsafe to continue because program is
outside its anticipated execution envelope

• Two reasonable alternatives
• Terminate computation
• Throw exception

Our Philosophy

• Should be able to ignore addressing errors
• Perform dynamic bounds checks
• Discard out of bounds writes
• Manufacture values for out of bounds reads
• Continue executing

• Called failure-oblivious computing

Consequences of Failure-Oblivious
Computing

• No corruption of other data blocks
• No segmentation violation
• No abnormal termination
• No addressing exceptions
• No security vulnerabilities

(from out of bounds writes)

Consequences of Failure-Oblivious
Computing

But what about errors in continued
execution ?!?!

• No corruption of other data blocks
• No segmentation violation
• No abnormal termination
• No addressing exceptions
• No security vulnerabilities

(from out of bounds writes)

Experiment

• Implemented compiler that generates
failure-oblivious code
(based on Ruwase & Lam's CRED compiler)

• Acquired programs (servers)
• Pine, Mutt (mail user agent)
• Apache (web server)
• Sendmail (mail transfer agent)
• Midnight Commander (file manager)

• Found bounds violation errors
• Potential security vulnerabilities
• Vulnerability-tracking web sites

Experiment

• Generated three versions of each program
• SC – standard compilation
• BC – bounds check compilation

(terminates program on bounds violations)

• FO – failure-oblivious compilation
(continues through bounds violations)

• Ran each version on workload containing
inputs that attempted to exploit vulnerability

Results

Secure? Initializes?
Continues
Correctly?

Correct for
Attack Input?

Pine

Sendmail

Midnight

Apache

Mutt

SC BC FO SC BC FO SC BC FO SC BC FO

Yes
No Maybe

Not Applicable

Why?

Let's take a look at some errors

Pine Error

Send mail message
Carefully crafted FROM field

To: john.doe@cs.uni.edu
From: <code>\"\"\"\"\"<addr>

Pine Error

Send mail message
Carefully crafted FROM field

To: john.doe@cs.uni.edu
From: <code>\"\"\"\"\"<addr>

To: john.doe@cs.uni.edu
From: <code>\"\"\"\"\"<addr>

Mail Folder

Pine Vulnerability

Send mail message
Carefully crafted FROM field

To: john.doe@cs.uni.edu
From: <code>\"\"\"\"\"<addr>

To: john.doe@cs.uni.edu
From: <code>\"\"\"\"\"<addr>

Mail Folder

• Pine reads message
• Processes FROM field
• Overflows buffer

Pine

Pine

Buffer

FROM field

rfc822_cat

a \ “ \ “ \ “ \

Two Quoting Rules
1) \ replaced by \\
2) “ replaced by \ “
• FROM field can double in size
• Buffer is not twice size of FROM field

Buffer

FROM field

Pine

rfc822_cat

a \ “ \ “ \ “ \

Two Quoting Rules
1) \ replaced by \\
2) “ replaced by \ “
• FROM field can double in size
• Buffer is not twice size of FROM field

“ \ \ \ “ \ \a \ \ \ “ \ \ \

Pine and Failure-Oblivious Computing

rfc822_cat

a \ “ \ “ \ “ \

a \ \ \ “ \ \ \

• Writes beyond end of buffer discarded
• FROM field effectively truncated

Buffer

FROM field

FROM fields that overflow buffer
Truncated at 18 characters in user interface

Apache

To redirect all gif files to corresponding jpg files on
another server, use this RedirectMatch command:

RedirectMatch (.*)\.gif$ http://www.images.com$1.jpg

Capture regular
expression here

Reference regular
expression here

/u/blue.gif http://www.images.com/u/blue.jpg

Captured regular
expression

Captured regular
expression

Storing Captured Regular Expression
Information

RedirectMatch (.*)\.gif$ http://www.images.com$1.jpg

• Array of structures that stores
captured regular expressions
• Start offset
• End offset

• Array has ten elements
• Space for ten captured regular

expressions0 7
2 3
3 4
4 5
5 6
6 7
7 8
8 9
9 10
10 11
11 12

/u/blue.gif http://www.images.com/u/blue.jpg

Storing Captured Regular Expression
Information

RedirectMatch C(0*)(1*)(2*)(3*)(4*)(5*)(6*)(7*)(8*)(9*)(A*)
index.html?input=$11

C0123456789A index.html?input=01

1 2
2 3
3 4
4 5
5 6
6 7
7 8
8 9
9 10
10 11
11 12 Offsets for eleventh captured regular

expression written beyond array bounds

Apache and Failure-Oblivious
Computing

RedirectMatch C(0*)(1*)(2*)(3*)(4*)(5*)(6*)(7*)(8*)(9*)(A*)
index.html?input=$11

C0123456789A index.html?input=01

1 2
2 3
3 4
4 5
5 6
6 7
7 8
8 9
9 10
10 11
11 12 Offsets for eleventh captured regular

expression discarded

Apache and Failure-Oblivious
Computing

RedirectMatch C(0*)(1*)(2*)(3*)(4*)(5*)(6*)(7*)(8*)(9*)(A*)
index.html?input=$11

C0123456789A index.html?input=01

1 2
2 3
3 4
4 5
5 6
6 7
7 8
8 9
9 10
10 11
11 12 Offsets for eleventh captured regular

expression discarded

• What about referencing eleventh, ...,
captured regular expressions?

• Can't reference - names are $1-$9
• Same fix as developers applied later…

static char *
utf8_to_utf7 (const char *u8, int u8len) {

char *buf = malloc(2*u8len+1);
…
return buf;

}

Mutt

utf8_to_utf7 called to translate folder names
from utf8 to utf7 format

static char *
utf8_to_utf7 (const char *u8, int u8len) {

char *buf = malloc(2*u8len+1);
…
return buf;

}

Mutt

Too small

static char *
utf8_to_utf7 (const char *u8, int u8len) {

char *buf = malloc(2*u8len+1);
…
return buf;

}

Mutt

26 41 42 41 41 45 41 41 51 41 42 41 2d 00

10 10 10 10

buf Out of bounds writes

u8

Too small

Mutt and Failure-Oblivious Computing

• Out of bounds writes discarded
• Converted string is effectively truncated
• Mailbox lookup fails (anticipated error case)
• Mutt remains usable

26 41 42 41 41 45 41 41 51

10 10 10 10

buf

u8

Summary
• Out of bounds reads and writes access data

irrelevant to final result of computation
• Pine - accessed data truncated in user interface
• Apache - inaccessible data
• Sendmail - FROM field fails later length check
• Midnight Commander - same (incorrect) result

regardless of content of written data
• Attacks converted into anticipated error cases

• Mutt - folder not found
• Sendmail - FROM field fails later length check
• Midnight Commander - file lookup fails

Expectations for Other Servers

• Effect of failure-oblivious computing
• Discarding out of bounds writes eliminates

global data structure (call stack) corruption
• Tends keep errors localized
• Server continues on to subsequent requests

• Servers have short error propagation distances
• Localized errors in one request
• Tend not to propagate to next request

• Subsequent requests serviced without errors

Memory Leaks

int *f(int n, int v) {
int i, s;
s = v * sizeof(int);
int *t = malloc(s); Allocation site
for (i = 0; i < n i++)

t[i] = v;
return t;

}

Memory Leaks

int *f(int n, int v) {
int i, s;
s = v * sizeof(int);
int *t = malloc(s);
for (i = 0; i < n i++)

t[i] = v;
return t;

}

Memory Leaks

int *f(int n, int v) {
int i, s;
s = v * sizeof(int);
int *t = malloc(s);
for (i = 0; i < n i++)

t[i] = v;
return t;

}

Memory Leaks

int *f(int n, int v) {
int i, s;
s = v * sizeof(int);
int *t = malloc(s);
for (i = 0; i < n i++)

t[i] = v;
return t;

}

Memory Leaks

int *f(int n, int v) {
int i, s;
s = v * sizeof(int);
int *t = malloc(s);
for (i = 0; i < n i++)

t[i] = v;
return t;

}

Memory Leaks

int *f(int n, int v) {
int i, s;
s = v * sizeof(int);
int *t = malloc(s);
for (i = 0; i < n i++)

t[i] = v;
return t;

}

Memory Leaks

int *f(int n, int v) {
int i, s;
s = v * sizeof(int);
int *t = malloc(s);
for (i = 0; i < n i++)

t[i] = v;
return t;

}

Memory Leak Conditions
• Unbounded allocation
• Unbounded number of dead objects
• Dead objects not reclaimed

• C – explicit free not called
• Java – dead objects remain

reachable

Memory Leak Issues

• Wastes resources, bogs down system
• Exhaust address space, program fails

• Similar problems with other resources
• File handle leaks
• Thread leaks
• Process leaks

Memory Leaks

int *f(int n, int v) {
int i, s;
s = v * sizeof(int);
int *t = malloc(s);
for (i = 0; i < n i++)

t[i] = v;
return t;

}

Program
Accesses At
Most Last k
Allocated
Objects

Cyclic Memory Allocation

int *f(int n, int v) {
int i, s;
s = v * sizeof(int);
int *t = malloc(s);
for (i = 0; i < n i++)

t[i] = v;
return t;

}

Preallocate buffer with k slots
Cyclically allocate objects out

of buffer

Cyclic Memory Allocation

int *f(int n, int v) {
int i, s;
s = v * sizeof(int);
int *t = malloc(s);
for (i = 0; i < n i++)

t[i] = v;
return t;

}

Preallocate buffer with k slots
Cyclically allocate objects out

of buffer

Cyclic Memory Allocation

int *f(int n, int v) {
int i, s;
s = v * sizeof(int);
int *t = malloc(s);
for (i = 0; i < n i++)

t[i] = v;
return t;

}

Preallocate buffer with k slots
Cyclically allocate objects out

of buffer

Cyclic Memory Allocation

int *f(int n, int v) {
int i, s;
s = v * sizeof(int);
int *t = malloc(s);
for (i = 0; i < n i++)

t[i] = v;
return t;

}

Preallocate buffer with k slots
Cyclically allocate objects out

of buffer

Cyclic Memory Allocation

int *f(int n, int v) {
int i, s;
s = v * sizeof(int);
int *t = malloc(s);
for (i = 0; i < n i++)

t[i] = v;
return t;

}

Preallocate buffer with k slots
Cyclically allocate objects out

of buffer
Frees turn into no-ops

Cyclic Memory Allocation

int *f(int n, int v) {
int i, s;
s = v * sizeof(int);
int *t = malloc(s);
for (i = 0; i < n i++)

t[i] = v;
return t;

}

Result – no more memory leak!

Preallocate buffer with k slots
Cyclically allocate objects out

of buffer
Frees turn into no-ops

Cyclic Memory Allocation Options

• Option 1: use cyclic allocation for all sites with k
• Option 2:

• Start out using normal allocation
• Watch for signs of triggered memory leak

• Count number of outstanding objects at
each site with a k

• Leak signaled when number >> k
• Switch when leak signaled

How Do We Obtain k?

• Instrument allocation sites, reads, writes
• Run program on test inputs
• For each allocation site and each test input

• Observe how far back in allocation stream
reads and writes access data

• Compute k from observations

You didn’t run program on ALL inputs.
Isn’t it possible for k to be too small for

some inputs you didn’t test?
Won’t you overlay live data?

Standard Response

You didn’t run program on ALL inputs.
Isn’t it possible for k to be too small for

some inputs you didn’t test?
Won’t you overlay live data?

Yes

Standard Response

Two Experimental Questions

How often is k too small?
What happens when you overlay live

data?

Methodology

• Acquired applications
• Squid – web proxy cache
• Xinetd – manages connections, requests
• Freeciv – interactive multiple player game
• Pine – mail client

• Training runs to find allocation sites with a k
• Validation runs to see if k too small

Percentage of Allocation Sites With a k

0

25

50

75

100

Squid Freeciv Pine Xinted

Percentage of Memory Allocated at Sites
With a k

0

25

50

75

100

Squid Freeciv Pine Xinetd

Memory Leaks?

• Squid has memory leak in SNMP module,
vulnerable to denial of service attack

• Xinetd leaks memory whenever it rejects a
connection, vulnerable to denial of service
attack

• Freeciv leaks boolean array storing presence
or absence of threats from ocean

Memory Leaks?

• Squid has memory leak in SNMP module,
vulnerable to denial of service attack

• Xinetd leaks memory whenever it rejects a
connection, vulnerable to denial of service
attack

• Freeciv leaks boolean array storing presence
or absence of threats from ocean

All of these leaks occur at sites with a k
Our technique eliminates them all

Memory Leaks?

• Squid has memory leak in SNMP module,
vulnerable to denial of service attack

• Xinetd leaks memory whenever it rejects a
connection, vulnerable to denial of service
attack

• Options
• Developer finds and fixes memory leak

(service is unavailable until leak fixed)
• Apply cyclic memory allocation automatically

(can find and fix leak immediately)
(no service interruption at all)

Memory Leaks?

• Squid has memory leak in SNMP module,
vulnerable to denial of service attack

• Xinetd leaks memory whenever it rejects a
connection, vulnerable to denial of service
attack

• Options
• Developer finds and fixes memory leak

(service is unavailable until leak fixed)
• Apply cyclic memory allocation automatically

(can find and fix leak immediately)
(no service interruption at all)

What??

Any k too Small?

• 160 allocation sites have k during training runs
• 1 site has k too small during validation runs

• Objects implement circular doubly linked list
of status messages

• Overlaying causes Pine to dereference null
pointer

Conflict Runs

• Take all allocation sites with k > 1
• Replace k by ⎡k/2⎤
• Observe effects
• 8 allocation sites with k > 2

• Infinite loop for 1 of 8 sites
• Segmentation fault for 2 of 8 sites
• Functionality impairment for 2 of 8 sites

• Squid – incorrect SNMP query response
• Squid – can’t process SNMP queries at all

• Fully functional for 3 of 8 sites

Getting Rid of Infinite Loops

• Record number of times n each loop executes
• Initialize with training runs
• Update during production runs

• Transform code so that each loop executes at
most 10^3 * n iterations
(Don’t update n if executes 10^3 * n times)

• Result
• No infinite loop
• Pine fully functional
• Some garbage in HTML documents

Effect of Failure-Oblivious Computing

• Pine
• Execution continues beyond null pointer error
• Some status messages display incorrectly
• Otherwise fully functional

• Freeciv
• Execution continues beyond bounds error
• AI players get bogus data
• Play a little differently

• Result
• Programs all survive
• Fully functional for 6 of 8 sites

New Trade Off
Traded off correctness

In return for memory leak elimination

Where Are We?
• Increased robustness of existing systems

• No infinite loops, memory errors, leaks
• Software will NEVER crash
• Survival preserves desirable behavior in

systems with multiple components
• Potential ways to exploit this flexibility

• Leave more errors in systems
• Preserve structure of system
• Eliminate introduction of more errors
• Less maintenance cost

• More aggressive development, releases

How You Can Use These Ideas Today

• You have something you need (but don’t have)
• A consistent data structure
• An output every ten milliseconds
• Server to survive a given input
• Eliminate a null pointer dereference

• Find an easy fix to get it
• Apply fix only where you have problem
• See if you are comfortable using it

Acknowledgements

• Butler Lampson
• Gerry Sussman
• Saman Amarasinghe
• Viktor Kuncak
• Karen Zee
• Rob Seator
• Arvind

• Cristian Cadar
• Daniel Dumitran
• Dan Roy
• Wes Beebee
• Tudor Leu
• Huu Hai Nguyen
• Brian Demsky

Dick Gabriel

DARPA
Lee Badger

Suggested Reading
• Acceptability-Oriented Computing, Martin Rinard (OOPSLA Onwards! 2003)
• Probabilistic Accuracy Bounds for Fault-Tolerant Computations That Discard

Tasks, Martin Rinard, (ICS 2006)
• Enhancing Server Availability and Security Through Failure-Oblivious

Computing, Martin Rinard, Cristian Cadar, Daniel Dumitran, Daniel M. Roy,
Tudor Leu, and William S. Beebee, Jr.
(OSDI 2006)

• Automatic Inference and Enforcement of Data Structure Consistency
Specifications, Brian Demsky, Michael Ernst, Philip Guo, Stephen
McCamant, Jeff Perkins, and Martin Rinard (ISSTA 2006)

• A Dynamic Mechanism for Recovering from Buffer Overflow Attacks, Stelios
Sidiroglou, Giannis Giovanidis, and Angelos D. Keromytis (ISC 2005)

• DieHard: Probabilistic Memory Safety for Unsafe Languages, Emery
Berger and Benjamin Zorn (PLDI 2006)

• Microreboot - A Technique for Cheap Recovery, George Candea, Shinichi
Kawamoto, Yuichi Fujiki, Greg Friedman, Armando Fox (OSDI 2004)

• Rx: Treating Bugs as Allergies – A safe method for surviving software
failures, Feng Qin, Joseph Tucek, Jagadessan Sundaresan, Yuanyuan Zhou
(SOSP 2005)

Post Talk Comments

• Development is different from deployment
• Want lots of checks during development to

find bugs early
• Can then turn checks off during

deployment if your goal is to have a
survivable system

• Be sure you understand the context in which
your software is going to be used before you
decide whether you want to continue or not

